Difference between revisions of "User:Tohline/Appendix/Ramblings"
(→Ramblings: Add new chapter to discussion numerically determined eigenvectors for zero-zero bipolytropes) |
|||
(93 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
__FORCETOC__ | |||
<!-- __NOTOC__ will force TOC off --> | |||
{{LSU_HBook_header}} | {{LSU_HBook_header}} | ||
Line 6: | Line 8: | ||
<ol> | <ol> | ||
<li>[[User:Tohline/Appendix/Ramblings/ | <li>Orthogonal Curvilinear Coordinate Systems | ||
<ol type="a"> | |||
<li>[[User:Tohline/Appendix/Ramblings/DirectionCosines|Direction Cosines]]</li> | |||
<li>[[User:Tohline/Appendix/Ramblings/EllipticCylinderCoordinates|(Confocal) Elliptic Cylinder Coordinates]] plus Concentric Analog ([[User:Tohline/Appendix/Ramblings/EllipticCylinderCoordinates#T5_Coordinates|T5 Coordinates]])</li> | |||
<li>[[User:Tohline/Appendix/Ramblings/ConcentricEllipsodalCoordinates|Concentric Ellipsoidal (T6) Coordinates]]</li> | |||
<li>[[User:Tohline/Appendix/Ramblings/ConcentricEllipsodalT8Coordinates|Concentric Ellipsoidal (T8) Coordinates]]</li> | |||
<li>[[User:Tohline/Appendix/Ramblings/ConcentricEllipsodalT12Coordinates|Concentric Ellipsoidal (T12) Coordinates]]</li> | |||
<li>[[User:Tohline/Appendix/Ramblings/ConcentricEllipsodalDaringAttack|Daring Attack]]</li> | |||
</ol> | |||
</li> | |||
<li>[[User:Tohline/Appendix/Ramblings/T1Coordinates|Relationship between HNM82 models and T1 coordinates]]</li> | <li>[[User:Tohline/Appendix/Ramblings/T1Coordinates|Relationship between HNM82 models and T1 coordinates]]</li> | ||
<li>[[User:Tohline/Appendix/Ramblings/SphericalWaveEquation|Playing with the Spherical Wave Equation]]</li> | <li>[[User:Tohline/Appendix/Ramblings/SphericalWaveEquation|Playing with the Spherical Wave Equation]]</li> | ||
<li>Analyzing Azimuthal Distortions | <li>Analyzing Azimuthal Distortions | ||
Line 39: | Line 49: | ||
</ol> | </ol> | ||
<li>[[User:Tohline/Appendix/Ramblings/Photosphere|Photosphere of Stably Accreting DWD]]</li> | <li>[[User:Tohline/Appendix/Ramblings/Photosphere|Photosphere of Stably Accreting DWD]]</li> | ||
<li>[[User:Tohline/Appendix/Ramblings/Hybrid_Scheme_old|Initial Effort to Explain Jay Call's ''Hybrid'' Scheme in the Context of Zach Byerly's Dissertation]]</li> | <li>[[User:Tohline/Appendix/PolytropicBinaries|Binary Polytropes]]</li> | ||
<li>A* Scheme | |||
<ol> | |||
<li>[[User:Tohline/Appendix/Ramblings/Hybrid_Scheme_old|Initial Effort to Explain Jay Call's ''Hybrid'' Scheme in the Context of Zach Byerly's Dissertation]]</li> | |||
<li>[[User:Tohline/Appendix/Ramblings/Hybrid_Scheme_Implications|Implications of Hybrid Scheme]] | |||
</ol> | |||
</li> | |||
<li>[[User:Tohline/Appendix/Ramblings/Nonlinar_Oscillation|Exploring the Properties of Radial Oscillations in Pressure-Truncated n = 5 Polytropes]]</li> | <li>[[User:Tohline/Appendix/Ramblings/Nonlinar_Oscillation|Exploring the Properties of Radial Oscillations in Pressure-Truncated n = 5 Polytropes]]</li> | ||
<li>[[User:Tohline/Appendix/Ramblings/Turning_Points#Turning_Points|Instabilities Associated with Equilibrium Sequence Turning Points]]</li> | <li>[[User:Tohline/Appendix/Ramblings/Turning_Points#Turning_Points|Instabilities Associated with Equilibrium Sequence Turning Points]]</li> | ||
<li>[[User:Tohline/Appendix/Ramblings/LedouxVariationalPrinciple|Derivations Related to Ledoux's Variational Principle]] | |||
<li>More on Zero-Zero Bipolytropes</li> | <li>More on Zero-Zero Bipolytropes</li> | ||
<ol style="list-style-type:lower-latin"> | <ol style="list-style-type:lower-latin"> | ||
<li>[[User:Tohline/Appendix/Ramblings/Additional_Analytically_Specified_Eigenvectors_for_Zero-Zero_Bipolytropes#Searching_for_Additional_Eigenvectors_of_Zero-Zero_Bipolytropes|Searching for Additional Eigenvectors]]</li> | <li>[[User:Tohline/SSC/Stability/BiPolytrope0_0Old#Radial_Oscillations_of_a_Zero-Zero_Bipolytrope|Pt 1: Radial Oscillations of a Zero-Zero-Bipolytrope (Early Flawed Summary)]]</li> | ||
<li>[[User:Tohline/SSC/Stability/BiPolytrope0_0Details#Radial_Oscillations_of_a_Zero-Zero_Bipolytrope|Pt 2: Details]]</li> | |||
<li>[[User:Tohline/Appendix/Ramblings/Additional_Analytically_Specified_Eigenvectors_for_Zero-Zero_Bipolytropes#Searching_for_Additional_Eigenvectors_of_Zero-Zero_Bipolytropes|Pt 3: Searching for Additional Eigenvectors]]</li> | |||
<li>[[User:Tohline/SSC/Stability/BiPolytrope0_0#Radial_Oscillations_of_a_Zero-Zero_Bipolytrope|Pt 4: Good Summary]]</li> | |||
<li>[[User:Tohline/Appendix/Ramblings/NumericallyDeterminedEigenvectors|Numerically Determined Eigenvectors]]</li> | <li>[[User:Tohline/Appendix/Ramblings/NumericallyDeterminedEigenvectors|Numerically Determined Eigenvectors]]</li> | ||
</ol> | </ol> | ||
<li>[[User:Tohline/Appendix/Ramblings/OriginOfPlanetaryNebulae|Investigation Resulting from a July, 2013 Discussion with Kundan Kadam]] | <li>Analyzing Five-One Bipolytropes</li> | ||
<ol style="list-style-type:lower-latin"> | |||
<li>[[User:Tohline/Appendix/Ramblings/BiPolytropeStability|Assessing the Stability of Spherical, BiPolytropic Configurations]]</li> | |||
<li>[[User:Tohline/Appendix/Ramblings/BiPolytrope51AnalyticStability|Searching for Analytic EigenVector for (5,1) Bipolytropes]]</li> | |||
<li>[[User:Tohline/Appendix/Ramblings/PatrickMotl|Discussing Patrick Motl's 2019 Simulations]]</li> | |||
<li>[[User:Tohline/Appendix/Ramblings/BiPolytrope51ContinueSearch|Continue Search]]</li> | |||
</ol> | |||
<li>[[User:Tohline/Appendix/Ramblings/OriginOfPlanetaryNebulae|On the Origin of Planetary Nebulae]] (Investigation Resulting from a July, 2013 Discussion with Kundan Kadam)</li> | |||
<li>[[User:Tohline/Appendix/Ramblings/InsideOut|Looking outward, from Inside a Black Hole]]</li> | |||
<li>[[User:Tohline/Appendix/Ramblings/StrongNuclearForce|Radial Dependence of the Strong Nuclear Force]]</li> | |||
<li>[[User:Tohline/Appendix/Ramblings/Dyson1893Part1|Dyson (1893a) Part I: Some Details]]</li> | |||
<li>[[User:Tohline/Appendix/Ramblings/RadiationHydro|Radiation-Hydrodynamics]]</li> | |||
<li>[[User:Tohline/Appendix/Ramblings/Saturn#Saturn|Saturn]]</li> | |||
<li>[[User:Tohline/Appendix/Ramblings/MyDoctoralStudents|Doctoral students Tohline has advised]] over the years</li> | |||
<li>[[User:Tohline/Appendix/Ramblings/ForDurisen|For Richard H. Durisen]]</li> | |||
<li>[[User:Tohline/Appendix/Ramblings/ForOuShangli|For Shangli Ou]]</li> | |||
<li>[[User:Tohline/Appendix/Ramblings/ForPaulFisher|For Paul Fisher]]</li> | |||
<li>[[User:Tohline/Appendix/Ramblings/ForPJ_April2021|For PJ in April 2021]]</li> | |||
<li>[[User:Tohline/ThreeDimensionalConfigurations/MeetsCOLLADAandOculusRiftS#Riemann_Meets_COLLADA_.26_Oculus_Rift_S|Riemann Meets COLLADA and Oculus Rift S]]: Example '''(b/a, c/a) = (0.41, 0.385)''' | |||
<ol type="a"> | |||
<li>[[User:Tohline/Appendix/Ramblings/VirtualReality#Virtual_Reality_and_3D_Printing|Virtual Reality and 3D Printing]]</li> | |||
<li>[[User:Tohline/Appendix/Ramblings/OculusRift_S|Success Importing Animated Scene into Oculus Rift S]]</li> | |||
<li>[[User:Tohline/Appendix/Ramblings/RiemannMeetsOculus|Carefully (Re)Build Riemann Type S Ellipsoids Inside Oculus Rift Environment]]</li> | |||
<li>Other Example S-type Riemann Ellipsoids: | |||
<ol type="i"> | |||
<li>[[User:Tohline/Appendix/Ramblings/RiemannB90C333|(b/a, c/a) = (0.90, 0.333)]]</li> | |||
<li>[[User:Tohline/Appendix/Ramblings/RiemannB74C692|(b/a, c/a) = (0.74, 0.692)]]</li> | |||
<li>[[User:Tohline/Appendix/Ramblings/RiemannB28C256|(b/a, c/a) = (0.28, 0.256)]]</li> | |||
</ol> | |||
</li> | |||
</ol> | |||
</li> | |||
<li>Challenges Constructing Ellipsoidal-Like Configurations | |||
<ol type="a"> | |||
<li>[[User:Tohline/ThreeDimensionalConfigurations/RiemannTypeI#Riemann_Type_1_Ellipsoids|Riemann Type 1 Ellipsoids]]</li> | |||
<li>[[User:Tohline/ThreeDimensionalConfigurations/Challenges#Challenges_Constructing_Ellipsoidal-Like_Configurations|Construction Challenges (Pt. 1)]]</li> | |||
<li>[[User:Tohline/ThreeDimensionalConfigurations/ChallengesPt2|Construction Challenges (Pt. 2)]]</li> | |||
<li>[[User:Tohline/ThreeDimensionalConfigurations/ChallengesPt3|Construction Challenges (Pt. 3)]]</li> | |||
<li>[[User:Tohline/ThreeDimensionalConfigurations/ChallengesPt4|Construction Challenges (Pt. 4)]]</li> | |||
<li>[[User:Tohline/ThreeDimensionalConfigurations/ChallengesPt5|Construction Challenges (Pt. 5)]]</li> | |||
<li>Related discussions of models viewed from a rotating reference frame: | |||
<ol type="i"> | |||
<li>[[User:Tohline/PGE/RotatingFrame#Rotating_Reference_Frame|PGE]]</li> | |||
<li><font color="red"><b>NOTE to Eric Hirschmann & David Neilsen... </b></font>I have moved the earlier contents of this page to a new Wiki location called [[User:Tohline/Apps/RiemannEllipsoids_Compressible|Compressible Riemann Ellipsoids]].</li> | |||
</ol> | |||
</li> | |||
</ol> | |||
</li> | |||
<li>Bordeaux University | |||
<ol type="a"> | |||
<li>[[User:Tohline/Appendix/Ramblings/Bordeaux|External Gravitational Potential of Toroids]]</li> | |||
<li>[[User:Tohline/Appendix/Ramblings/BordeauxSequences|Spheroid-Ring Sequences]]</li> | |||
<li>[[User:Tohline/Appendix/Ramblings/BordeauxPostDefense|Discussions Following Dissertation Defense]]</li> | |||
</ol> | |||
</li> | |||
<li>[[User:Tohline/Appendix/Ramblings/CopyrightIssues|Copyright Issues]]</li> | |||
</ol> | </ol> | ||
Line 54: | Line 131: | ||
<li>Roots of Cubic Equation</li> | <li>Roots of Cubic Equation</li> | ||
<ol style="list-style-type:lower-latin"> | <ol style="list-style-type:lower-latin"> | ||
<li>In the context of [[User:Tohline/Appendix/Ramblings/T1Coordinates#Second_Special_Case_.28cubic.29|T2 Coordinates]], when <math>~q^2 = (a_1/a_3)^2=3</math>.</li> | |||
<li>[[User:Tohline/Appendix/Ramblings/PPTori#Cubic_Equation_Solution|PP Tori]] — Also includes [[User:Tohline/Appendix/Ramblings/PPTori#CubeRootImaginary|cube root of a complex number]]</li> | <li>[[User:Tohline/Appendix/Ramblings/PPTori#Cubic_Equation_Solution|PP Tori]] — Also includes [[User:Tohline/Appendix/Ramblings/PPTori#CubeRootImaginary|cube root of a complex number]]</li> | ||
<li>[[User:Tohline/SSC/Structure/Polytropes#CubicRoot|Srivastava's F-Type solution]] for <math>~n=5</math> polytropes.</li> | <li>[[User:Tohline/SSC/Structure/Polytropes#CubicRoot|Srivastava's F-Type solution]] for <math>~n=5</math> polytropes.</li> | ||
Line 69: | Line 147: | ||
<li>[[User:Tohline/Apps/ImamuraHadleyCollaboration#Singular_Sturm-Liouville_Problem|Characteristics of unstable eigenvectors in self-gravitating tori]]</li> | <li>[[User:Tohline/Apps/ImamuraHadleyCollaboration#Singular_Sturm-Liouville_Problem|Characteristics of unstable eigenvectors in self-gravitating tori]]</li> | ||
</ol> | </ol> | ||
<li>[[User:Tohline/Appendix/Ramblings/PowerSeriesExpressions|Approximate Power-Series Expressions]]</li> | |||
<li>[[User:Tohline/Appendix/Ramblings/FourierSeries|Fourier Series]]</li> | |||
<li>[[User:Tohline/AxisymmetricConfigurations/PoissonEq#Special_Functions_.26_Other_Broadly_Used_Representations|Special Functions & Other Broadly Used Representations]]</li> | |||
<ol> | |||
<li>[[User:Tohline/AxisymmetricConfigurations/PoissonEq#Spherical_Harmonics_and_Associated_Legendre_Functions|Spherical Harmonics and Associated Legendre Functions]]</li> | |||
<li>[[User:Tohline/AxisymmetricConfigurations/PoissonEq#Multipole_Expansions|Multipole Expansions]]</li> | |||
<li>[[User:Tohline/AxisymmetricConfigurations/PoissonEq#Familiar_Expression_for_the_Cylindrical_Green.27s_Function_Expansion|Familiar Expression for the Cylindrical Green's Function Expansion]]</li> | |||
<li>[[User:Tohline/AxisymmetricConfigurations/PoissonEq#Toroidal_Functions|Toroidal Functions]]</li> | |||
</ol> | |||
<li>Green's Function in terms of Toroidal Functions</li> | |||
<ol style="list-style-type:lower-latin"> | |||
<li>[[User:Tohline/Appendix/Ramblings/CCGF|Compact Cylindrical Green Function]]</li> | |||
<li>[[User:Tohline/Appendix/Ramblings/ToroidalCoordinates#Relating_CCGF_Expansion_to_Toroidal_Coordinates|Toroidal configurations & related coordinate systems]] — Includes <b><font color="red">EUREKA!</font></b> moment; also uses [[User:Tohline/Appendix/Ramblings/ToroidalCoordinates#Examples|wikitable overflow]] (scrolling) box</li> | |||
<li>[[User:Tohline/2DStructure/ToroidalCoordinateIntegrationLimits#Evaluation_of_Elliptic_Integrals|Toroidal Coordinate Integration Limits]] <math>~\Leftarrow ~~</math> Includes Table of Example K(k) and E(k) Function Values; see a separate set of K(k) and E(k) evaluations in the context of [[User:Tohline/Apps/DysonPotential#Our_Attempt_to_Replicate|Our Attempt to Replicate]] Dyson's results.</li> | |||
<li>[[User:Tohline/2DStructure/ToroidalCoordinates#Using_Toroidal_Coordinates_to_Determine_the_Gravitational_Potential|Using Toroidal Coordinates to Determine the Gravitational Potential]] (Initial Presentation)</li> | |||
<li>[[User:Tohline/2DStructure/ToroidalGreenFunction#Appendix_B:_Elliptic_Integrals|Using Toroidal Coordinates to Determine the Gravitational Potential]] (Improved Presentation) <math>~\Leftarrow</math> includes [[User:Tohline/2DStructure/ToroidalGreenFunction#Series_Expansions|series expansions]] for K(k) and E(k)</li> | |||
<li>[[User:Tohline/Appendix/Mathematics/ToroidalFunctions|Relationships between Toroidal Functions]] <math>~\Leftarrow ~~</math> 5 plots of [<b>[[User:Tohline/Appendix/References#MF53|<font color="red">MF53</font>]]</b>] data included here</li> | |||
<li>[[User:Tohline/Appendix/Mathematics/ToroidalConfusion|Confusion Regarding Whipple Formulae]]</li> | |||
<li>[[User:Tohline/Appendix/Mathematics/ToroidalSynopsis01|Pulling It All Together]] <math>~\Leftarrow ~~</math> 2 additional plots of [<b>[[User:Tohline/Appendix/References#MF53|<font color="red">MF53</font>]]</b>] data included here</li> | |||
</ol> | |||
<li>[[User:Tohline/Appendix/Mathematics/ScaleFactors|Scale Factors for Orthogonal Curvilinear Coordinate Systems]]</li> | |||
</ol> | </ol> | ||
==Computer-Generated Holography== | |||
<table border="1" align="right" cellpadding="8"> | |||
<tr> | |||
<td align="center"> | |||
Computer Generated Holgram (Fall 2004)<br />in collaboration with <b>[https://digitalcommons.lsu.edu/gradschool_dissertations/2127/ Richard Muffoletto]</b><br />and others from [https://www.utsouthwestern.edu utsouthwestern.edu] as cited | |||
</td> | |||
</tr> | |||
<tr><td align="center">[[File:Hologram2004.JPG|400px|Muffoletto's CGH]]</tr> | |||
</table> | |||
<ol type="I" start="0"> | |||
<li>Lead in …</li> | |||
<ol type="A"> | |||
<li>[http://www.phys.lsu.edu/faculty/tohline/phys4412/howto/ Original Table of Contents]</li> | |||
<li>[[User:Tohline/Appendix/CGH/Preface|Preface]] </li> | |||
</ol> | |||
<li>Apertures that are Parallel to the Image Screen:</li> | |||
<ol type="A"> | |||
<li>One-dimensional Aperture | |||
<ol type="1"> | |||
<li> | |||
[[User:Tohline/Appendix/CGH/ParallelApertures|Initial Ideas]] | |||
</li> | |||
<li> | |||
[[User:Tohline/Appendix/CGH/ParallelAperturesConsolidate|Consolidate Expressions]] | |||
</li> | |||
<li> | |||
[[User:Tohline/Appendix/CGH/KAH2001|T. Kreis, P. Aswendt, & R. Höfling (2001)]], Optical Engineering, vol. 40, no. 6, 926 - 933: ''Hologram reconstruction using a digital micromirror device'' | |||
</li> | |||
</ol> | |||
</li> | |||
<li>[[User:Tohline/Appendix/CGH/ParallelApertures2D|Two-dimensional, Rectangular Aperture]] </li> | |||
<li>[[User:Tohline/Appendix/CGH/ParallelAperturesHolograms|Relevance to Holograms]]</li> | |||
<li>[[User:Tohline/Appendix/CGH/ParallelAperturesWisdom|Caution and Words of Wisdom]]</li> | |||
</ol> | |||
<li>Apertures that are Tilted with Respect to the Image Screen:</li> | |||
<li>Building Holograms from VRML Files:</li> | |||
<li>[[User:Tohline/Appendix/CGH/ZebraImaging|ZebraImaging and Southwestern Medical Center]]</li> | |||
<li>Embracing COLLADA (2020)</li> | |||
<ol type="A"> | |||
<li>[[User:Tohline/Appendix/CGH/COLLADAprincipal|Principal Illustration]]</li> | |||
<li>[[User:Tohline/Appendix/CGH/COLLADAdemonstration|Demonstration Steps]]</li> | |||
</ol> | |||
<li>Quantum Mechanics</li> | |||
<ul> | |||
<li>[[User:Tohline/Appendix/CGH/WhatIsReal|What is Real?]]</li> | |||
<li>[[User:Tohline/Appendix/CGH/QuantumTransitions|Speculation Regarding Quantum Transitions]]</li> | |||
</ul> | |||
<li>On 4/15/2021, Google brought the following article to my attention: [https://doi.org/10.1364/OE.26.010773 S. Igarashi, T. Nakamura, K. Matsushima, & M. Yamaguchi (2018)], Optics Express, Vol. 26, Issue 8, pp.10773-10786, ''Efficient tiled calculation of over-10-gigapixel holograms using ray-wavefront conversion.'' It heavily references [22] the 2007 (Opt. Express, '''15'''(9), 5631-5640, ''Shifted Fresnel diffraction for computational holography'') work that I published in collaboration with R. Muffoletto and John Tyler. | |||
</ol> | |||
==Computer Algorithms== | |||
<ol type="1"> | |||
<li>Directory …/fortran/FreeEnergy/EFE: [[User:Tohline/Appendix/ComputerAlgorithms/EFE|README]]</li> | |||
<li>Directory [[User:Tohline/Appendix/ComputerAlgorithms/Riemann|…/numRecipes/EllipticIntegrals/Riemann]]</li> | |||
</ol> | |||
<br /> | <br /> | ||
{{LSU_HBook_footer}} | {{LSU_HBook_footer}} |
Latest revision as of 17:10, 28 May 2021
| Tiled Menu | Tables of Content | Banner Video | Tohline Home Page | |
Ramblings
Sometimes I explore some ideas to a sufficient depth that it seems worthwhile for me to archive the technical derivations even if the idea itself does not immediately produce a publishable result. This page, which has a simple outline layout, provides links to these various pages of technical notes.
- Orthogonal Curvilinear Coordinate Systems
- Relationship between HNM82 models and T1 coordinates
- Playing with the Spherical Wave Equation
- Analyzing Azimuthal Distortions
- Summary for Hadley & Imamura
- Detailed Notes 🎦
- Supplementary database generated by the Hadley & Imamura collaboration
- Large supplementary dataset accumulated by the Hadley & Imamura collaboration
- YouTube videos that supplement simulations of J. W. Woodward, J. E. Tohline, & I. Hachisu (1994)
- Stability Analyses of PP Tori
- Stability Analyses of PP Tori (Part 2)
- Integrals of Motion
- Old discussion
- T3 Coordinates
- Special (quadratic) case: Joel's Derivation vs. Jay's Derivation
- Killing Vector Approach; Jay Call's related Talk page
- Characteristic Vector for T3 Coordinates
- T4 Coordinates (Abandoned by Joel 7/6/2010 because non-orthogonal)
- Marcello's Radiation-Hydro Simulations
- Photosphere of Stably Accreting DWD
- Binary Polytropes
- A* Scheme
- Exploring the Properties of Radial Oscillations in Pressure-Truncated n = 5 Polytropes
- Instabilities Associated with Equilibrium Sequence Turning Points
- Derivations Related to Ledoux's Variational Principle
- More on Zero-Zero Bipolytropes
- Pt 1: Radial Oscillations of a Zero-Zero-Bipolytrope (Early Flawed Summary)
- Pt 2: Details
- Pt 3: Searching for Additional Eigenvectors
- Pt 4: Good Summary
- Numerically Determined Eigenvectors
- Analyzing Five-One Bipolytropes
- Assessing the Stability of Spherical, BiPolytropic Configurations
- Searching for Analytic EigenVector for (5,1) Bipolytropes
- Discussing Patrick Motl's 2019 Simulations
- Continue Search
- On the Origin of Planetary Nebulae (Investigation Resulting from a July, 2013 Discussion with Kundan Kadam)
- Looking outward, from Inside a Black Hole
- Radial Dependence of the Strong Nuclear Force
- Dyson (1893a) Part I: Some Details
- Radiation-Hydrodynamics
- Saturn
- Doctoral students Tohline has advised over the years
- For Richard H. Durisen
- For Shangli Ou
- For Paul Fisher
- For PJ in April 2021
- Riemann Meets COLLADA and Oculus Rift S: Example (b/a, c/a) = (0.41, 0.385)
- Challenges Constructing Ellipsoidal-Like Configurations
- Riemann Type 1 Ellipsoids
- Construction Challenges (Pt. 1)
- Construction Challenges (Pt. 2)
- Construction Challenges (Pt. 3)
- Construction Challenges (Pt. 4)
- Construction Challenges (Pt. 5)
- Related discussions of models viewed from a rotating reference frame:
- PGE
- NOTE to Eric Hirschmann & David Neilsen... I have moved the earlier contents of this page to a new Wiki location called Compressible Riemann Ellipsoids.
- Bordeaux University
- Copyright Issues
Mathematics
- Roots of Cubic Equation
- In the context of T2 Coordinates, when <math>~q^2 = (a_1/a_3)^2=3</math>.
- PP Tori — Also includes cube root of a complex number
- Srivastava's F-Type solution for <math>~n=5</math> polytropes.
- Murphy & Fiedler's Bipolytrope with <math>~(n_c, n_e) = (1,5)</math>
- Analytic Eigenfunctions for Bipolytropes with <math>~(n_c, n_e) = (0, 0)</math> — also involves cube root of a complex number
- Roots of Quartic Equation
- Analytic Eigenfunction for Bipolytropes with <math>~(n_c, n_e) = (0, 0)</math>
- Determine temperature from total pressure
- Singular Sturm-Liouville (eigenvalue) Problem
- Oscillations of PP Tori in the slim torus limit
- Characteristics of unstable eigenvectors in self-gravitating tori
- Approximate Power-Series Expressions
- Fourier Series
- Special Functions & Other Broadly Used Representations
- Spherical Harmonics and Associated Legendre Functions
- Multipole Expansions
- Familiar Expression for the Cylindrical Green's Function Expansion
- Toroidal Functions
- Green's Function in terms of Toroidal Functions
- Compact Cylindrical Green Function
- Toroidal configurations & related coordinate systems — Includes EUREKA! moment; also uses wikitable overflow (scrolling) box
- Toroidal Coordinate Integration Limits <math>~\Leftarrow ~~</math> Includes Table of Example K(k) and E(k) Function Values; see a separate set of K(k) and E(k) evaluations in the context of Our Attempt to Replicate Dyson's results.
- Using Toroidal Coordinates to Determine the Gravitational Potential (Initial Presentation)
- Using Toroidal Coordinates to Determine the Gravitational Potential (Improved Presentation) <math>~\Leftarrow</math> includes series expansions for K(k) and E(k)
- Relationships between Toroidal Functions <math>~\Leftarrow ~~</math> 5 plots of [MF53] data included here
- Confusion Regarding Whipple Formulae
- Pulling It All Together <math>~\Leftarrow ~~</math> 2 additional plots of [MF53] data included here
- Scale Factors for Orthogonal Curvilinear Coordinate Systems
Computer-Generated Holography
Computer Generated Holgram (Fall 2004) |
- Lead in …
- Apertures that are Parallel to the Image Screen:
- One-dimensional Aperture
- Initial Ideas
- Consolidate Expressions
- T. Kreis, P. Aswendt, & R. Höfling (2001), Optical Engineering, vol. 40, no. 6, 926 - 933: Hologram reconstruction using a digital micromirror device
- Two-dimensional, Rectangular Aperture
- Relevance to Holograms
- Caution and Words of Wisdom
- Apertures that are Tilted with Respect to the Image Screen:
- Building Holograms from VRML Files:
- ZebraImaging and Southwestern Medical Center
- Embracing COLLADA (2020)
- Quantum Mechanics
- On 4/15/2021, Google brought the following article to my attention: S. Igarashi, T. Nakamura, K. Matsushima, & M. Yamaguchi (2018), Optics Express, Vol. 26, Issue 8, pp.10773-10786, Efficient tiled calculation of over-10-gigapixel holograms using ray-wavefront conversion. It heavily references [22] the 2007 (Opt. Express, 15(9), 5631-5640, Shifted Fresnel diffraction for computational holography) work that I published in collaboration with R. Muffoletto and John Tyler.
Computer Algorithms
- Directory …/fortran/FreeEnergy/EFE: README
- Directory …/numRecipes/EllipticIntegrals/Riemann
© 2014 - 2021 by Joel E. Tohline |