User:Tohline/Appendix/Ramblings/ForPaulFisher
For Paul Fisher
| Tiled Menu | Tables of Content | Banner Video | Tohline Home Page | |
Overview of Dissertation
Paul Fisher's (1999) doctoral dissertation (accessible via the LSU Digital Commons) is titled, Nonaxisymmetric Equilibrium Models for Gaseous Galaxy Disks. Its abstract reads, in part:
Three-dimensional hydrodynamic simulations show that, in the absence of self-gravity, an axisymmetric, gaseous galaxy disk whose angular momentum vector is initially tipped at an angle, <math>~i_0</math>, to the symmetry axis of a fixed spheroidal dark matter halo potential does not settle to the equatorial plane of the halo. Instead, the disk settles to a plane that is tipped at an angle, <math>~\alpha = \tan^{-1}[q^2 \tan i_0]</math>, to the equatorial plane of the halo, where <math>~q</math> is the axis ratio of the halo equipotential surfaces. The equilibrium configuration to which the disk settles appears to be flat but it exhibits distinct nonaxisymmetric features. . |
All three-dimensional hydrodynamic simulations employ Richstone's (1980) time-independent "axisymmetric logarithmic potential" that is prescribed by the expression,
<math>~\Phi(x, y, z)</math> |
<math>~=</math> |
<math>~ \frac{v_0^2}{2}~ \ln\biggl[x^2 + y^2 + \frac{z^2}{q^2} \biggr] \, . </math> |
Thoughts Moving Forward
Let's continue to examine a collection of Lagrangian fluid elements that are orbiting in an (axisymmetric) oblate-spheroidal potential with flattening "q." But rather than adopting the Richstone potential, we will consider the potential generated inside an homogeneous (i.e., Maclaurin) spheroid whose eccentricity is, <math>~e = (1 - q^2)^{1 / 2}</math>, namely,
<math> \Phi(\varpi,z) = -\pi G \rho \biggl[ I_\mathrm{BT} a_1^2 - \biggl(A_1 \varpi^2 + A_3 z^2 \biggr) \biggr], </math>
[ST83], §7.3, p. 169, Eq. (7.3.1)
where, the coefficients <math>~A_1</math>, <math>~A_3</math>, and <math>~I_\mathrm{BT}</math> are functions only of the spheroid's eccentricity. What does the potential field look like from the perspective of a particle/fluid-element whose orbital angular momentum vector is tipped at an angle, <math>~i_0</math>, to the symmetry axis of the oblate-spheroidal potential? Presumably the potential is "observed" to vary with position around the orbit as though the underlying potential is non-axisymmetric. Does it appear to be the potential inside a Riemann S-Type ellipsoid? If so, what values of <math>~(b/a, c/a)</math> correspond to the chosen parameter pair, <math>~(q, i_0)</math>?
Well, let's define a primed (Cartesian) coordinate system whose z'-axis is tipped at this angle, <math>~i_0</math>, with respect to the symmetry axis of the oblate-spheroidal potential. Drawing from a discussion in which we have presented a closely analogous methodical derivation of orbital parameters, we have,
|
|
||||||||||||||||||
|
|
When viewed from this primed frame, the potential associated with a Maclaurin spheroid becomes,
<math>~(\pi G \rho)^{-1} \Phi(x', y', z') + I_\mathrm{BT} a_1^2</math> |
<math>~=</math> |
<math>~ A_1 \biggl[ (x')^2 + \biggl(y'\cos i_0 - z' \sin i_0\biggr)^2 \biggr] + A_3 \biggl[ z_0 + z' \cos i_0 + y' \sin i_0 \biggr]^2 </math> |
|
<math>~=</math> |
<math>~ A_1 \biggl[ (x')^2 + (y')^2 \cos^2 i_0 + (z')^2 \sin^2 i_0 - 2(y' z')\sin i_0 \cos i_0\biggr] </math> |
|
|
<math>~ + A_3 \biggl[ z_0^2 + 2 z' z_0 \cos i_0 + 2z_0 y' \sin i_0 + (z')^2 \cos^2 i_0 + 2y' z' \sin i_0 \cos i_0 + (y')^2 \sin^2 i_0 \biggr] </math> |
|
<math>~=</math> |
<math>~ A_1 (x')^2 + (y')^2 \biggl[A_1 \cos^2 i_0 + A_3 \sin^2 i_0 \biggr] + (z')^2 \biggl[ A_1 \sin^2 i_0 + A_3\cos^2 i_0 \biggr] </math> |
|
|
<math>~ + z_0 A_3 \biggl[ z_0 + 2 z' \cos i_0 + 2 y' \sin i_0 \biggr] + 2(A_3 - A_1 )y' z' \sin i_0 \cos i_0 \, . </math> |
See Also
- Type I Riemann Ellipsoids.
- Dimitris M. Christodoulou's (1989) doctoral dissertation (accessible via the LSU Digital Commons) titled, Using Tilted-Ring Models and Numerical Hydrodynamics to Study the Structure, Kinematics and Dynamics of HI Disks in Galaxies.
© 2014 - 2021 by Joel E. Tohline |