User:Tohline/H BookTiledMenu
Tiled Menu
| Tiled Menu | Tables of Content | Banner Video | Tohline Home Page | |
Context
Global Energy Considerations |
---|
Principal Governing Equations (PGEs) |
Continuity | Euler | 1st Law of Thermodynamics |
Poisson |
---|
Equation of State (EOS) |
Ideal Gas | Total Pressure |
---|
Spherically Symmetric Configurations
(Initially) Spherically Symmetric Configurations |
---|
Structural Form Factors |
Free-Energy of Spherical Systems |
---|
One-Dimensional PGEs |
---|
Equilibrium Structures
1D STRUCTURE |
---|
Scalar Virial Theorem |
---|
Hydrostatic Balance Equation |
Solution Strategies |
---|
Isothermal Sphere |
via Direct Numerical Integration |
---|
Isolated Polytropes |
Lane (1870) |
Known Analytic Solutions |
via Direct Numerical Integration |
via Self-Consistent Field (SCF) Technique |
---|
Zero-Temperature White Dwarf |
Chandrasekhar Limiting Mass (1935) |
---|
Virial Equilibrium of Pressure-Truncated Polytropes |
---|
Pressure-Truncated Configurations |
Bonnor-Ebert (Isothermal) Spheres (1955 - 56) |
Polytropes | Equilibrium Sequence Turning-Points ♥ |
Turning-Points (Broader Context) |
---|
Free Energy of Bipolytropes (nc, ne) = (5, 1) |
---|
Composite Polytropes (Bipolytropes) |
Schönberg- Chandrasekhar Mass (1942) |
Analytic (nc, ne) = (5, 1) |
Analytic (nc, ne) = (1, 5) |
---|
Stability Analysis
1D STABILITY |
---|
Variational Principle |
---|
Radial Pulsation Equation |
Example Derivations & Statement of Eigenvalue Problem |
(poor attempt at) Reconciliation |
Relationship to Sound Waves |
---|
Uniform-Density Configurations |
Sterne's Analytic Sol'n of Eigenvalue Problem (1937) |
---|
Pressure-Truncated Isothermal Spheres |
|
via Direct Numerical Integration |
---|
Yabushita's Analytic Sol'n for Marginally Unstable Configurations (1974) |
|
---|
Polytropes |
|
Isolated n = 3 Polytrope |
Pressure-Truncated n = 5 Configurations |
---|
Exact Demonstration of B-KB74 Conjecture |
Exact Demonstration of Variational Principle |
Pressure-Truncated n = 5 Polytropes |
---|
Our Analytic Sol'n for Marginally Unstable Configurations (2017) ♥ |
|
---|
BiPolytropes | Murphy & Fiedler (1985b) (nc, ne) = (1,5) |
Our Broader Analysis |
---|
Nonlinear Dynamical Evolution
1D DYNAMICS |
---|
Free-Fall Collapse |
---|
Collapse of Isothermal Spheres |
via Direct Numerical Integration |
Similarity Solution |
---|
Collapse of an Isolated n = 3 Polytrope |
---|
Two-Dimensional Configurations (Axisymmetric)
(Initially) Axisymmetric Configurations |
---|
"As a practical matter, discussions of the effect of rotation on self-gravitating fluid masses divide into two categories: the structure of steady-state configurations, and the oscillations and the stability of these configurations." |
— Drawn from N. R. Lebovitz (1967), ARAA, 5, 465 |
We add a third category, namely, the nonlinear dynamical evolution of systems that are revealed via stability analyses to be unstable. |
PGEs for Axisymmetric Systems |
---|
Axisymmetric Equilibrium Structures
2D STRUCTURE |
---|
Constructing Axisymmetric Equilibrium Configurations |
Axisymmetric Instabilities to Avoid |
Simple Rotation Profiles |
Hachisu Self-Consistent-Field [HSCF] Technique |
Solving the Poisson Equation |
---|
Using Toroidal Coordinates to Determine the Gravitational Potential |
Attempt at Simplification ♥ |
Wong's Analytic Potential (1973) |
---|
Spheroidal & Spheroidal-Like
Uniform-Density (Maclaurin) Spheroids |
Maclaurin's Original Text & Analysis (1742) |
---|
Rotationally Flattened Isothermal Configurations |
Hayashi, Narita & Miyama's Analytic Sol'n (1982) |
Review of Stahler's (1983) Technique |
---|
Rotationally Flattened Polytropes |
Example Equilibria |
---|
Rotationally Flattened White Dwarfs |
Ostriker Bodenheimer & Lynden-Bell (1966) |
Example Equilibria |
---|
Toroidal & Toroidal-Like
Definition: anchor ring |
---|
Massless Polytropic Configurations |
Papaloizou-Pringle Tori (1984) |
---|
Self-Gravitating Incompressible Configurations |
Dyson (1893) |
Dyson-Wong Tori |
---|
Self-Gravitating Compressible Configurations |
Ostriker (1964) |
---|
Stability Analysis
2D STABILITY |
---|
Sheroidal & Spheroidal-Like
Linear Analysis of Bar-Mode Instability |
Bifurcation from Maclaurin Sequence |
Traditional Analyses |
Time-Dependent Simulations |
---|
- T. G. Cowling & R. A. Newing (1949), ApJ, 109, 149: The Oscillations of a Rotating Star
- M. J. Clement (1965), ApJ, 141, 210: The Radial and Non-Radial Oscillations of Slowly Rotating Gaseous Masses
- P. H. Roberts & K. Stewartson (1963), ApJ, 137, 777: On the Stability of a Maclaurin spheroid of small viscosity
- C. E. Rosenkilde (1967), ApJ, 148, 825: The tensor virial-theorem including viscous stress and the oscillations of a Maclaurin spheroid
- S. Chandrasekhar & N. R. Lebovitz (1968), ApJ, 152, 267: The Pulsations and the Dynamical Stability of Gaseous Masses in Uniform Rotation
- C. Hunter (1977), ApJ, 213, 497: On Secular Stability, Secular Instability, and Points of Bifurcation of Rotating Gaseous Masses
- J. N. Imamura, J. L. Friedman & R. H. Durisen (1985), ApJ, 294, 474: Secular stability limits for rotating polytropic stars
- J. R. Ipser & L. Lindblom (1990), ApJ, 355, 226: The Oscillations of Rapidly Rotating Newtonian Stellar Models
- J. R. Ipser & L. Lindblom (1991), ApJ, 373, 213: The Oscillations of Rapidly Rotating Newtonian Stellar Models. II. Dissipative Effects
- J. N. Imamura, J. L. Friedman & R. H. Durisen (2000), ApJ, 528, 946: Nonaxisymmetric Dynamic Instabilities of Rotating Polytropes. II. Torques, Bars, and Mode Saturation with Applications to Protostars and Fizzlers
- G. P. Horedt (2019), ApJ, 877, 9: On the Instability of Polytropic Maclaurin and Roche ellipsoids
Toroidal & Toroidal-Like
Defining the Eigenvalue Problem |
---|
(Massless) Papaloizou-Pringle Tori |
Analytic Analysis by Blaes (1985) |
---|
Nonlinear Dynamical Evolution
2D DYNAMICS |
---|
Free-Fall Collapse of an Homogeneous Spheroid |
---|
Two-Dimensional Configurations (Nonaxisymmetric Disks)
Infinitesimally Thin, Nonaxisymmetric Disks |
---|
2D STRUCTURE |
---|
Constructing Infinitesimally Thin Nonaxisymmetric Disks |
---|
Three-Dimensional Configurations
(Initially) Three-Dimensional Configurations |
---|
Equilibrium Structures
3D STRUCTURE |
---|
Special numerical techniques must be developed "to build three-dimensional compressible equilibrium models with complicated flows." To date … "techniques have only been developed to build compressible equilibrium models of nonaxisymmetric configurations for a few systems with simplified rotational profiles, e.g., rigidly rotating systems (Hachisu & Eriguchi 1984; Hachisu 1986), irrotational systems (Uryū & Eriguchi 1998), and configurations that are stationary in the inertial frame (Uryū & Eriguchi 1996)." |
— Drawn from §1 of Ou (2006), ApJ, 639, 549 |
Ellipsoidal & Ellipsoidal-Like
Constructing Ellipsoidal & Ellipsoidal-Like Configurations |
---|
Jacobi Ellipsoids |
---|
- B. P. Kondrat'ev (1985), Astrophysics, 23, 654: Irrotational and zero angular momentum ellipsoids in the Dirichlet problem
- D. Lai, F. A. Rasio & S. L. Shapiro (1993), ApJS, 88, 205: Ellipsoidal Figures of Equilibrium: Compressible models
Binary Systems
- S. Chandrasekhar (1933), MNRAS, 93, 539: The equilibrium of distorted polytropes. IV. the rotational and the tidal distortions as functions of the density distribution
- S. Chandrasekhar (1963), ApJ, 138, 1182: The Equilibrium and the Stability of the Roche Ellipsoids
Roche's problem is concerned with the equilibrium and the stability of rotating homogeneous masses which are, further, distorted by the constant tidal action of an attendant rigid spherical mass. |
Stability Analysis
3D STABILITY |
---|
Ellipsoidal & Ellipsoidal-Like
Binary Systems
- S. Chandrasekhar (1963), ApJ, 138, 1182: The Equilibrium and the Stability of the Roche Ellipsoids
- G. P. Horedt (2019), ApJ, 877, 9: On the Instability of Polytropic Maclaurin and Roche Ellipsoids
Nonlinear Evolution
3D DYNAMICS |
---|
Free-Energy Evolution from the Maclaurin to the Jacobi Sequence |
---|
Fission Hypothesis |
---|
Secular
- M. Fujimoto (1971), ApJ, 170, 143: Nonlinear Motions of Rotating Gaseous Ellipsoids
- W. H. Press & S. A. Teukolsky (1973), ApJ, 181, 513: On the Evolution of the Secularly Unstable, Viscous Maclaurin Spheroids
- S. L. Detweiler & L. Lindblom (1977), ApJ, 213, 193: On the evolution of the homogeneous ellipsoidal figures.
Dynamical
See Also
© 2014 - 2021 by Joel E. Tohline |