Difference between revisions of "User:Tohline/H BookTiledMenu"
Line 215: | Line 215: | ||
! style="height: 150px; width: 150px; border-right:2px dashed black;" |[http://adsabs.harvard.edu/abs/1993ApJ...416..303F via<br/>Direct<br />Numerical<br />Integration] | ! style="height: 150px; width: 150px; border-right:2px dashed black;" |[http://adsabs.harvard.edu/abs/1993ApJ...416..303F via<br/>Direct<br />Numerical<br />Integration] | ||
| | | | ||
! style="height: 150px; width: 150px;" | | ! style="height: 150px; width: 150px;" |[[User:Tohline/SSC/IsothermalSimilaritySolution|Similarity<br />Solution]] | ||
|} | |} | ||
<p> </p> | <p> </p> |
Revision as of 03:15, 9 July 2017
Tiled Menu
| Tiled Menu | Tables of Content | Banner Video | Tohline Home Page | |
Context
Principal Governing Equations (PGEs) |
Continuity | Euler | 1st Law of Thermodynamics |
Poisson |
---|
Equation of State (EOS) |
Total Pressure |
---|
Spherically Symmetric Configurations
One-Dimensional PGEs |
---|
Equilibrium Structures
Hydrostatic Balance Equation |
Solution Strategies |
---|
Isothermal Sphere |
via Direct Numerical Integration |
---|
Isolated Polytropes |
Known Analytic Solutions |
via Direct Numerical Integration |
via Self-Consistent Field (SCF) Technique |
---|
Zero-Temperature White Dwarf |
Chandrasekhar Limiting Mass |
---|
Pressure-Truncated Configurations |
Bonnor-Ebert (Isothermal) Spheres |
Polytropes | Equilibrium Sequence Turning-Points |
---|
Stability Analysis
Radial Pulsation Equation |
Example Derivations & Statement of Eigenvalue Problem |
Relationship to Sound Waves |
---|
Uniform-Density Configurations |
Sterne's Analytic Sol'n of Eigenvalue Problem |
---|
Pressure-Truncated Isothermal Spheres |
|
via Direct Numerical Integration |
---|
Yabushita's Analytic Sol'n for Marginally Unstable Configurations |
|
---|
Polytropes |
|
Isolated n = 3 Polytrope |
Pressure-Truncated Configurations |
---|
Our Analytic Sol'n for Marginally Unstable Configurations |
|
---|
Nonlinear Dynamical Evolution
Free-Fall Collapse |
---|
Collapse of Isothermal Spheres |
via Direct Numerical Integration |
Similarity Solution |
---|
Collapse of an Isolated n = 3 Polytrope |
---|
See Also
© 2014 - 2021 by Joel E. Tohline |