Difference between revisions of "User:Tohline/2DStructure/ToroidalCoordinateIntegrationLimits"

From VistrailsWiki
Jump to navigation Jump to search
(→‎Preamble: Begin text discussion of objective)
Line 9: Line 9:


==Preamble==
==Preamble==
Referencing the illustration displayed in the left-hand panel of the following figure, our goal is to determine the gravitational potential at any cylindrical-coordinate location <math>~(R_0, Z_0)</math> due to a uniform-density circular torus whose major radius is <math>~\varpi_t</math> and whose cross-sectional radius is <math>~r_t</math>.
Here we explain how a toroidal coordinate system &#8212; as defined, for example, by MF53 (see the schematic illustration in the right-hand panel of the following figure) &#8212; can be used to reduce the geometric complexity of this problem.  In particular, we show how the three-dimensional integral over the mass distribution can be reduced to the sum of a small number (1 - 4) of one-dimensional integrals over the <math>~\xi_1</math> "radial" coordinate in toroidal coordinates.


<table border="1" cellpadding="8" align="center">
<table border="1" cellpadding="8" align="center">
<tr>
<tr>
   <th align="center" colspan="2"><font size="+1">Apollonian Circles (schematic)</font><p></p>
  <th align="center" colspan="3"><font size="+1">Figure 1: &nbsp;&nbsp; Meridional slice through &hellip;</font></th>
</tr>
<tr>
  <th align="center" colspan="1"><font size="+1">(Pink) Circular Torus</font></th>
   <th align="center" colspan="2"><font size="+1">Toroidal Coordinate System (schematic)</font><p></p>
                     (see also [https://en.wikipedia.org/wiki/File:Apollonian_circles.svg Wikipedia's Apollonian Circles])</th>
                     (see also [https://en.wikipedia.org/wiki/File:Apollonian_circles.svg Wikipedia's Apollonian Circles])</th>
</tr>
</tr>
<tr>
<tr>
<td align="center">
[[File:SimpleTorusIllustration.png|300px|Torus Illustration]]
</td>
<td align="center">
<td align="center">
[[File:Apollonian_myway4.png|300px|Apollonian Circles]]
[[File:Apollonian_myway4.png|300px|Apollonian Circles]]
Line 24: Line 33:
</tr>
</tr>
<tr>
<tr>
   <th align="center" colspan="2"><font size="+1">Quantitative Illustration of Employed Toroidal Coordinate System</font></th>
   <th align="center" colspan="3"><font size="+1">Quantitative Illustration of Employed Toroidal Coordinate System</font></th>
</tr>
</tr>
<tr>
<tr>
Line 33: Line 42:
[[File:ConstantXi2.png|300px|Diagram of Torus and xi_2-constant Toroidal Coordinate curve]]
[[File:ConstantXi2.png|300px|Diagram of Torus and xi_2-constant Toroidal Coordinate curve]]
</td>
</td>
  <td align="center">
&nbsp;
  </td>
</tr>
</tr>
</table>
</table>

Revision as of 23:47, 10 November 2015

Toroidal-Coordinate Integration Limits

In support of our accompanying discussion of the gravitational potential of a uniform-density circular torus, here we explain in detail what limits of integration must be specified in order to accurately determine the volume — and, hence also the total mass — of such a torus using toroidal coordinates.


Whitworth's (1981) Isothermal Free-Energy Surface
|   Tiled Menu   |   Tables of Content   |  Banner Video   |  Tohline Home Page   |

Preamble

Referencing the illustration displayed in the left-hand panel of the following figure, our goal is to determine the gravitational potential at any cylindrical-coordinate location <math>~(R_0, Z_0)</math> due to a uniform-density circular torus whose major radius is <math>~\varpi_t</math> and whose cross-sectional radius is <math>~r_t</math>. Here we explain how a toroidal coordinate system — as defined, for example, by MF53 (see the schematic illustration in the right-hand panel of the following figure) — can be used to reduce the geometric complexity of this problem. In particular, we show how the three-dimensional integral over the mass distribution can be reduced to the sum of a small number (1 - 4) of one-dimensional integrals over the <math>~\xi_1</math> "radial" coordinate in toroidal coordinates.

Figure 1:    Meridional slice through …
(Pink) Circular Torus Toroidal Coordinate System (schematic)

(see also Wikipedia's Apollonian Circles)

Torus Illustration

Apollonian Circles

Apollonian Circles

Quantitative Illustration of Employed Toroidal Coordinate System

Diagram of Torus and Toroidal Coordinates

Diagram of Torus and xi_2-constant Toroidal Coordinate curve

 


Schematic Zones
Zone I

<math>~Z_0 > r_t</math>

for any <math>~a</math>
Zone II

<math>~r_t > Z_0 > 0</math>

and

<math>~a < \varpi_t - \sqrt{r_t^2 - Z_0^2}</math>
Zone III

<math>~r_t > Z_0 > 0</math>

and

<math>~\varpi_t - \sqrt{r_t^2 - Z_0^2} < a < \varpi_t + \sqrt{r_t^2 - Z_0^2}</math>

Apollonian Circles

Apollonian Circles

Apollonian Circles


<math>~\frac{V_i}{V_\mathrm{torus}}</math>

<math>~=</math>

<math>~\frac{a^3}{2\pi \varpi_t r_t^2} \int\limits_{\xi_1 = \lambda_i}^{\xi_1 = \Lambda_i} d\xi_1 \biggl\{ \frac{(1-\xi_2^2)^{1/2} [ 4\xi_1^2 - 3\xi_1 \xi_2 - 1]}{(\xi_1^2-1)^2 (\xi_1 - \xi_2)^2} + \biggl[ \frac{(2\xi_1^2 + 1)}{(\xi_1^2-1)^{5/2}}\biggr] \cos^{-1}\biggl[ \frac{(\xi_1\xi_2 - 1 )}{(\xi_1- \xi_2)} \biggr] \biggr\}_{\xi_2 = \gamma_i}^{\xi_2 = \Gamma_i} \, . </math>

<math>~\Phi_i(a,Z_0)</math>

<math>~=</math>

<math>~\frac{2^{5/2} G \rho_0 a^{2}}{3} \int\limits_{\xi_1 = \lambda_i}^{\xi_1 = \Lambda_i} \frac{(\xi_1+1)^{1/2}K(\mu) d\xi_1}{(\xi_1^2 - 1)^2 [ (\xi_1^2 - 1)^{1/2}+\xi_1 ]^{1/2} } \biggr[ \frac{\sin \theta(5\xi_1^2 - 4\xi_1 \cos \theta - 1)}{(\xi_1+1)^{1/2} (\xi_1 - \cos \theta)^{3/2}} </math>

 

 

<math>~ - 4\xi_1 E\biggl( \frac{\pi-\theta}{2} \, , \sqrt{\frac{2}{\xi_1 + 1}} \biggr) + (\xi_1-1) F\biggl( \frac{\pi-\theta}{2} \, , \sqrt{\frac{2}{\xi_1 + 1}} \biggr) \biggr]_{\theta = \cos^{-1}(\gamma_i)}^{\theta = \cos^{-1}(\Gamma_i)} \, . </math>

See Also

 

Whitworth's (1981) Isothermal Free-Energy Surface

© 2014 - 2021 by Joel E. Tohline
|   H_Book Home   |   YouTube   |
Appendices: | Equations | Variables | References | Ramblings | Images | myphys.lsu | ADS |
Recommended citation:   Tohline, Joel E. (2021), The Structure, Stability, & Dynamics of Self-Gravitating Fluids, a (MediaWiki-based) Vistrails.org publication, https://www.vistrails.org/index.php/User:Tohline/citation