Difference between revisions of "User:Tohline/2DStructure/ToroidalCoordinateIntegrationLimits"

From VistrailsWiki
Jump to navigation Jump to search
(→‎Preamble: More preamble material, including general volume integral and general integral for the gravitational potential)
Line 43: Line 43:
<tr>
<tr>
   <th align="center" colspan="1"><font size="+1">Zone I</font><p></p>
   <th align="center" colspan="1"><font size="+1">Zone I</font><p></p>
<math>~Z_0 > r_t</math>&nbsp; for any <math>~a</math></th>
<math>~Z_0 > r_t</math><p></p>for any <math>~a</math></th>
   <th align="center" colspan="1"><font size="+1">Zone II</font><p></p>
   <th align="center" colspan="1"><font size="+1">Zone II</font><p></p>
<math>~r_t > Z_0 > 0</math>&nbsp; and &nbsp; <math>~a < (\varpi_t-r_t)</math></th>
<math>~r_t > Z_0 > 0</math><p></p>and<p></p><math>~a < (\varpi_t-r_t)</math></th>
   <th align="center" colspan="1"><font size="+1">Zone II</font><p></p>
   <th align="center" colspan="1"><font size="+1">Zone III</font><p></p>
<math>~r_t > Z_0 > 0</math>&nbsp; and &nbsp; <math>~a < (\varpi_t-r_t)</math></th>
<math>~r_t > Z_0 > 0</math><p></p>and<p></p><math>~\varpi_t - \sqrt{r_t^2 - Z_0^2} < a < \varpi+ + \sqrt{r_t^2 - Z_0^2}</math></th>
</tr>
</tr>
<tr>
<tr>
Line 61: Line 61:
</tr>
</tr>
</table>
</table>
<div align="center">
<table border="1" cellpadding="8">
<tr><td align="center">
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~\frac{V_i}{V_\mathrm{torus}}</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\frac{a^3}{2\pi \varpi_t r_t^2} \int\limits_{\xi_1 = \lambda_i}^{\xi_1 = \Lambda_i}  d\xi_1
\biggl\{
\frac{(1-\xi_2^2)^{1/2} [ 4\xi_1^2 - 3\xi_1 \xi_2 - 1]}{(\xi_1^2-1)^2 (\xi_1 - \xi_2)^2}
+ \biggl[ \frac{(2\xi_1^2 + 1)}{(\xi_1^2-1)^{5/2}}\biggr] \cos^{-1}\biggl[ \frac{(\xi_1\xi_2 - 1 )}{(\xi_1- \xi_2)} \biggr]
\biggr\}_{\xi_2 = \gamma_i}^{\xi_2 = \Gamma_i} \, .
</math>
  </td>
</tr>
</table>
</td>
</tr>
</table>
</div>
<div align="center">
<table border="1" cellpadding="8" align="center">
<tr><td align="center">
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~\Phi_i(a,Z_0)</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\frac{2^{5/2} G \rho_0 a^{2}}{3}
\int\limits_{\xi_1 = \lambda_i}^{\xi_1 = \Lambda_i}  \frac{(\xi_1+1)^{1/2}K(\mu) d\xi_1}{(\xi_1^2 - 1)^2 [ (\xi_1^2 - 1)^{1/2}+\xi_1 ]^{1/2} }
\biggr[ \frac{\sin \theta(5\xi_1^2 - 4\xi_1 \cos \theta - 1)}{(\xi_1+1)^{1/2} (\xi_1 - \cos \theta)^{3/2}}
</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
&nbsp;
  </td>
  <td align="left">
<math>~ - 4\xi_1 E\biggl( \frac{\pi-\theta}{2} \, , \sqrt{\frac{2}{\xi_1 + 1}} \biggr)
+ (\xi_1-1) F\biggl( \frac{\pi-\theta}{2} \, , \sqrt{\frac{2}{\xi_1 + 1}} \biggr) \biggr]_{\theta = \cos^{-1}(\gamma_i)}^{\theta = \cos^{-1}(\Gamma_i)} \, .
</math>
  </td>
</tr>
</table>
</td></tr>
</table>
</div>


=See Also=
=See Also=

Revision as of 02:41, 10 November 2015

Toroidal-Coordinate Integration Limits

In support of our accompanying discussion of the gravitational potential of a uniform-density circular torus, here we explain in detail what limits of integration must be specified in order to accurately determine the volume — and, hence also the total mass — of such a torus using toroidal coordinates.


Whitworth's (1981) Isothermal Free-Energy Surface
|   Tiled Menu   |   Tables of Content   |  Banner Video   |  Tohline Home Page   |

Preamble

Apollonian Circles (schematic)

(see also Wikipedia's Apollonian Circles)

Apollonian Circles

Apollonian Circles

Quantitative Illustration of Employed Toroidal Coordinate System

Diagram of Torus and Toroidal Coordinates

Diagram of Torus and xi_2-constant Toroidal Coordinate curve


Schematic Zones
Zone I

<math>~Z_0 > r_t</math>

for any <math>~a</math>
Zone II

<math>~r_t > Z_0 > 0</math>

and

<math>~a < (\varpi_t-r_t)</math>
Zone III

<math>~r_t > Z_0 > 0</math>

and

<math>~\varpi_t - \sqrt{r_t^2 - Z_0^2} < a < \varpi+ + \sqrt{r_t^2 - Z_0^2}</math>

Apollonian Circles

Apollonian Circles

Apollonian Circles


<math>~\frac{V_i}{V_\mathrm{torus}}</math>

<math>~=</math>

<math>~\frac{a^3}{2\pi \varpi_t r_t^2} \int\limits_{\xi_1 = \lambda_i}^{\xi_1 = \Lambda_i} d\xi_1 \biggl\{ \frac{(1-\xi_2^2)^{1/2} [ 4\xi_1^2 - 3\xi_1 \xi_2 - 1]}{(\xi_1^2-1)^2 (\xi_1 - \xi_2)^2} + \biggl[ \frac{(2\xi_1^2 + 1)}{(\xi_1^2-1)^{5/2}}\biggr] \cos^{-1}\biggl[ \frac{(\xi_1\xi_2 - 1 )}{(\xi_1- \xi_2)} \biggr] \biggr\}_{\xi_2 = \gamma_i}^{\xi_2 = \Gamma_i} \, . </math>

<math>~\Phi_i(a,Z_0)</math>

<math>~=</math>

<math>~\frac{2^{5/2} G \rho_0 a^{2}}{3} \int\limits_{\xi_1 = \lambda_i}^{\xi_1 = \Lambda_i} \frac{(\xi_1+1)^{1/2}K(\mu) d\xi_1}{(\xi_1^2 - 1)^2 [ (\xi_1^2 - 1)^{1/2}+\xi_1 ]^{1/2} } \biggr[ \frac{\sin \theta(5\xi_1^2 - 4\xi_1 \cos \theta - 1)}{(\xi_1+1)^{1/2} (\xi_1 - \cos \theta)^{3/2}} </math>

 

 

<math>~ - 4\xi_1 E\biggl( \frac{\pi-\theta}{2} \, , \sqrt{\frac{2}{\xi_1 + 1}} \biggr) + (\xi_1-1) F\biggl( \frac{\pi-\theta}{2} \, , \sqrt{\frac{2}{\xi_1 + 1}} \biggr) \biggr]_{\theta = \cos^{-1}(\gamma_i)}^{\theta = \cos^{-1}(\Gamma_i)} \, . </math>

See Also

 

Whitworth's (1981) Isothermal Free-Energy Surface

© 2014 - 2021 by Joel E. Tohline
|   H_Book Home   |   YouTube   |
Appendices: | Equations | Variables | References | Ramblings | Images | myphys.lsu | ADS |
Recommended citation:   Tohline, Joel E. (2021), The Structure, Stability, & Dynamics of Self-Gravitating Fluids, a (MediaWiki-based) Vistrails.org publication, https://www.vistrails.org/index.php/User:Tohline/citation