Difference between revisions of "User:Tohline/SSC/Structure/BiPolytropes/MurphyUVplane"

From VistrailsWiki
Jump to navigation Jump to search
(Create new chapter to present in detail Murphy's UV-plane analysis)
 
(Begin laying out text of this new chapter, borrowing from our more complete discussion of this bipolytrope's construction)
Line 1: Line 1:
__FORCETOC__
__FORCETOC__
=BiPolytrope with <math>n_c = 1</math> and <math>n_e=5</math>=
=UV Plane Functions as Analyzed by Murphy (1983)=
{{LSU_HBook_header}}
{{LSU_HBook_header}}


Here we construct a [[User:Tohline/SSC/Structure/BiPolytropes#BiPolytropes|bipolytrope]] in which the core has an <math>~n_c=1</math> polytropic index and the envelope has an <math>~n_e=5</math> polytropic index.  As in the case of our [[User:Tohline/SSC/Structure/BiPolytropes/Analytic5_1#BiPolytrope_with_nc_.3D_5_and_ne_.3D_1|separately discussed, "mirror image" bipolytropes having <math>~(n_c, n_e) = (5, 1)</math>]], this system is particularly interesting because the entire structure can be described by closed-form, analytic expressions.  [On '''<font color="red">12 April 2015</font>''', J. E. Tohline wrote:  I became aware of the published discussions of this system by Murphy &#8212; and especially the work of [http://adsabs.harvard.edu/abs/1985PASAu...6..222M Murphy &amp; Fiedler (1985)] &#8212; (see itemization of [[User:Tohline/SSC/Structure/BiPolytropes/Analytic1_5#Key_References|additional key references, below]]) in March of 2015 after searching the internet for previous analyses of radial oscillations in polytropes and, then, reading through [http://adsabs.harvard.edu/abs/2004ASSL..306.....H Horedt's (2004)] &sect;2.8.1 discussion of composite polytropes.]   
This chapter supports and expands upon [[User:Tohline/SSC/Structure/BiPolytropes/Analytic1_5#BiPolytrope_with_nc_.3D_1_and_ne_.3D_5|an accompanying discussion]] of the construction of a [[User:Tohline/SSC/Structure/BiPolytropes#BiPolytropes|bipolytrope]] in which the core has an <math>~n_c=1</math> polytropic index and the envelope has an <math>~n_e=5</math> polytropic index.  This system is particularly interesting because the entire structure can be described by closed-form, analytic expressions.  Here we provide an in-depth analysis of the work published by [http://adsabs.harvard.edu/abs/1983PASAu...5..175M J. O. Murphy (1983, Proc. Astr. Soc. of Australia, 5, 175)] in which the derivation of this particular bipolytropic configuration was first attempted.  As can be seen from the following list of "key references," however, this publication was only one of a series of interrelated works by Murphy.  We will henceforth refer to this <math>~(n_c, n_e) = (1, 5)</math> system as "Murphy's bipolytrope."


==Key References==
==Key References==
Line 17: Line 17:
* [http://adsabs.harvard.edu/abs/1985PASAu...6..222M J. O. Murphy &amp; R. Fiedler (1985b, Proc. Astr. Soc. of Australia, 6, 222)]:  ''Radial Pulsations and Vibrational Stability of a Sequence of Two-Zone Polytropic Stellar Models''
* [http://adsabs.harvard.edu/abs/1985PASAu...6..222M J. O. Murphy &amp; R. Fiedler (1985b, Proc. Astr. Soc. of Australia, 6, 222)]:  ''Radial Pulsations and Vibrational Stability of a Sequence of Two-Zone Polytropic Stellar Models''


==Steps 2 &amp; 3==
==Relevant Lane-Emden Functions==


As is detailed in [[User:Tohline/SSC/Structure/BiPolytropes/Analytic1_5#Steps_2_.26_3|our accompanying discussion]], the Lane-Emden function governing the structure of the ''core'' of Murphy's bipolytrope is,
<div align="center">
<math>
\theta(\xi) = \frac{\sin\xi}{\xi} \, ,
</math>
</div>
and the first derivative of this function with respect to the dimensionless radial coordinate, <math>~\xi</math>, is,
<div align="center">
<math>
\frac{d\theta}{d\xi} =  -\frac{1}{\xi^{2}} (\sin\xi - \xi\cos\xi) \, .
</math>
</div>
Also as is detailed in [[User:Tohline/SSC/Structure/BiPolytropes/Analytic1_5#Step_6:__Envelope_Solution|our accompanying discussion]], the Lane-Emden function governing the structure of the ''envelope'' of Murphy's bipolytrope is,


<div align="center">
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~\phi(\eta)</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\frac{B^{-1}\sin[\ln(A\eta)^{1/2})]}{\eta^{1/2}\{3-2\sin^2[\ln(A\eta)^{1/2}]\}^{1/2}} </math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\frac{B^{-1}\sin\Delta}{\eta^{1/2}(3-2\sin^2\Delta)^{1/2}} \, ,</math>
  </td>
</tr>
</table>
</div>
and the first derivative of this function is,
<div align="center">
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~\frac{d\phi}{d\eta}</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~-
\frac{B^{-1}(3\sin\Delta - 2\sin^3\Delta -3\cos\Delta) }{2\eta^{3/2}(3-2\sin^2\Delta)^{3/2}}  \, ,
</math>
  </td>
</tr>
</table>
</div>
where we have adopted the shorthand notation,
<div align="center">
<math>~\Delta \equiv \ln(A\eta)^{1/2}  \, .</math>
</div>
==Chandrasekhar's U and V Functions==
<div align="center" id="MurphyUVplane">
<table border="1" cellpadding="8" width="80%">
<tr>
  <td align="center">
<font color="red">'''ASIDE:'''</font>  Comments on Presentation by [http://adsabs.harvard.edu/abs/1983PASAu...5..175M Murphy (1983)]
  </td>
</tr>
<tr>
  <td align="left">
As presented by [http://adsabs.harvard.edu/abs/1983PASAu...5..175M Murphy (1983)], most of the development and analysis of this model was conducted within the framework of what is commonly referred to in the astrophysics community as the "U-V" plane.  Specifically in the context of the model's <math>~n=5</math> envelope, this pair of referenced functions are:
<div align="center">
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~U_{5F} \equiv \eta \phi^5 \biggl(- \frac{d\phi}{d\eta}\biggr)^{-1}</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\frac{B^{-4}\eta \sin^5\Delta}{\eta^{5/2}\{3-2\sin^2\Delta\}^{5/2}}
\biggl[ \frac{2\eta^{3/2}(3-2\sin^2\Delta)^{3/2}}{3\sin\Delta - 2\sin^3\Delta -3\cos\Delta }  \biggr]
</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\frac{2B^{-4}\sin^5\Delta}{[3-2\sin^2\Delta][3\sin\Delta - 2\sin^3\Delta -3\cos\Delta ]}
</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\frac{-2B^{-4}\sin^5\Delta}{[2+\cos(2\Delta)][3\cos\Delta - \frac{3}{2}\sin\Delta - \frac{1}{2}\sin(3\Delta) ]} \, ;
</math>
  </td>
</tr>
<tr>
  <td align="right">
<math>~V_{5F} \equiv \frac{\eta}{ \phi} \biggl(- \frac{d\phi}{d\eta}\biggr)</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\frac{\eta^{3/2}\{3-2\sin^2\Delta\}^{1/2}} {\sin\Delta}
\frac{[3\sin\Delta - 2\sin^3\Delta -3\cos\Delta ] }{2\eta^{3/2}(3-2\sin^2\Delta)^{3/2}}
</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\frac{[3\sin\Delta - 2\sin^3\Delta -3\cos\Delta ] }{2\sin\Delta (3-2\sin^2\Delta)}
</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\frac{-[3\cos\Delta - \frac{3}{2}\sin\Delta - \frac{1}{2}\sin(3\Delta)  ] }{2\sin\Delta [2+\cos(2\Delta)]} \, .
</math>
  </td>
</tr>
</table>
</div>
After recognizing that <math>~\cos(2\Delta) = \cos(2\ln\eta^{1/2}) = \cos(\ln\eta)\, ,</math> we see that these expressions for the functions, <math>~U_{5F}</math> and <math>~V_{5F}</math>, match the expressions used by [http://adsabs.harvard.edu/abs/1983PASAu...5..175M Murphy (1983)] and reproduced (slightly edited) here as an image, for ease of comparison:
<table border="0" cellpadding="8" align="center">
<tr><td align="center">
[[File:Murphy1983UVfunctions.png|center|700px|U_5F and V_5F Functions by Murphy (1983)]]
</td></tr>
</table>
  </td>
</tr>
</table>
</div>





Revision as of 20:41, 1 May 2015

UV Plane Functions as Analyzed by Murphy (1983)

Whitworth's (1981) Isothermal Free-Energy Surface
|   Tiled Menu   |   Tables of Content   |  Banner Video   |  Tohline Home Page   |

This chapter supports and expands upon an accompanying discussion of the construction of a bipolytrope in which the core has an <math>~n_c=1</math> polytropic index and the envelope has an <math>~n_e=5</math> polytropic index. This system is particularly interesting because the entire structure can be described by closed-form, analytic expressions. Here we provide an in-depth analysis of the work published by J. O. Murphy (1983, Proc. Astr. Soc. of Australia, 5, 175) in which the derivation of this particular bipolytropic configuration was first attempted. As can be seen from the following list of "key references," however, this publication was only one of a series of interrelated works by Murphy. We will henceforth refer to this <math>~(n_c, n_e) = (1, 5)</math> system as "Murphy's bipolytrope."

Key References

Relevant Lane-Emden Functions

As is detailed in our accompanying discussion, the Lane-Emden function governing the structure of the core of Murphy's bipolytrope is,

<math> \theta(\xi) = \frac{\sin\xi}{\xi} \, , </math>

and the first derivative of this function with respect to the dimensionless radial coordinate, <math>~\xi</math>, is,

<math> \frac{d\theta}{d\xi} = -\frac{1}{\xi^{2}} (\sin\xi - \xi\cos\xi) \, . </math>

Also as is detailed in our accompanying discussion, the Lane-Emden function governing the structure of the envelope of Murphy's bipolytrope is,

<math>~\phi(\eta)</math>

<math>~=</math>

<math>~\frac{B^{-1}\sin[\ln(A\eta)^{1/2})]}{\eta^{1/2}\{3-2\sin^2[\ln(A\eta)^{1/2}]\}^{1/2}} </math>

 

<math>~=</math>

<math>~\frac{B^{-1}\sin\Delta}{\eta^{1/2}(3-2\sin^2\Delta)^{1/2}} \, ,</math>

and the first derivative of this function is,

<math>~\frac{d\phi}{d\eta}</math>

<math>~=</math>

<math>~- \frac{B^{-1}(3\sin\Delta - 2\sin^3\Delta -3\cos\Delta) }{2\eta^{3/2}(3-2\sin^2\Delta)^{3/2}} \, , </math>

where we have adopted the shorthand notation,

<math>~\Delta \equiv \ln(A\eta)^{1/2} \, .</math>

Chandrasekhar's U and V Functions

ASIDE: Comments on Presentation by Murphy (1983)

As presented by Murphy (1983), most of the development and analysis of this model was conducted within the framework of what is commonly referred to in the astrophysics community as the "U-V" plane. Specifically in the context of the model's <math>~n=5</math> envelope, this pair of referenced functions are:

<math>~U_{5F} \equiv \eta \phi^5 \biggl(- \frac{d\phi}{d\eta}\biggr)^{-1}</math>

<math>~=</math>

<math>~ \frac{B^{-4}\eta \sin^5\Delta}{\eta^{5/2}\{3-2\sin^2\Delta\}^{5/2}} \biggl[ \frac{2\eta^{3/2}(3-2\sin^2\Delta)^{3/2}}{3\sin\Delta - 2\sin^3\Delta -3\cos\Delta } \biggr] </math>

 

<math>~=</math>

<math>~ \frac{2B^{-4}\sin^5\Delta}{[3-2\sin^2\Delta][3\sin\Delta - 2\sin^3\Delta -3\cos\Delta ]} </math>

 

<math>~=</math>

<math>~ \frac{-2B^{-4}\sin^5\Delta}{[2+\cos(2\Delta)][3\cos\Delta - \frac{3}{2}\sin\Delta - \frac{1}{2}\sin(3\Delta) ]} \, ; </math>

<math>~V_{5F} \equiv \frac{\eta}{ \phi} \biggl(- \frac{d\phi}{d\eta}\biggr)</math>

<math>~=</math>

<math>~\frac{\eta^{3/2}\{3-2\sin^2\Delta\}^{1/2}} {\sin\Delta} \frac{[3\sin\Delta - 2\sin^3\Delta -3\cos\Delta ] }{2\eta^{3/2}(3-2\sin^2\Delta)^{3/2}} </math>

 

<math>~=</math>

<math>~\frac{[3\sin\Delta - 2\sin^3\Delta -3\cos\Delta ] }{2\sin\Delta (3-2\sin^2\Delta)} </math>

 

<math>~=</math>

<math>~\frac{-[3\cos\Delta - \frac{3}{2}\sin\Delta - \frac{1}{2}\sin(3\Delta) ] }{2\sin\Delta [2+\cos(2\Delta)]} \, . </math>

After recognizing that <math>~\cos(2\Delta) = \cos(2\ln\eta^{1/2}) = \cos(\ln\eta)\, ,</math> we see that these expressions for the functions, <math>~U_{5F}</math> and <math>~V_{5F}</math>, match the expressions used by Murphy (1983) and reproduced (slightly edited) here as an image, for ease of comparison:

U_5F and V_5F Functions by Murphy (1983)


Related Discussions


Whitworth's (1981) Isothermal Free-Energy Surface

© 2014 - 2021 by Joel E. Tohline
|   H_Book Home   |   YouTube   |
Appendices: | Equations | Variables | References | Ramblings | Images | myphys.lsu | ADS |
Recommended citation:   Tohline, Joel E. (2021), The Structure, Stability, & Dynamics of Self-Gravitating Fluids, a (MediaWiki-based) Vistrails.org publication, https://www.vistrails.org/index.php/User:Tohline/citation