Difference between revisions of "User:Tohline/Appendix/Ramblings/ForPaulFisher"

From VistrailsWiki
Jump to navigation Jump to search
 
(3 intermediate revisions by the same user not shown)
Line 15: Line 15:
</td></tr></table>
</td></tr></table>


All three-dimensional hydrodynamic simulations employ Richstone's (1980) time-independent "axisymmetric logarithmic potential" that is prescribed by the expression,
All three-dimensional hydrodynamic simulations employ [https://ui.adsabs.harvard.edu/abs/1980ApJ...238..103R/abstract Richstone's (1980)] time-independent "axisymmetric logarithmic potential" that is prescribed by the expression,
<table border="0" cellpadding="5" align="center">
<table border="0" cellpadding="5" align="center">


Line 35: Line 35:
==Thoughts Moving Forward==
==Thoughts Moving Forward==


Let's continue to examine a collection of Lagrangian fluid elements that are orbiting in an (axisymmetric) oblate-spheroidal potential with flattening "q."  But rather than adopting  the Richstone potential, we will consider the [[User:Tohline/Apps/MaclaurinSpheroids#Gravitational_Potential|potential generated inside an homogeneous (''i.e.,'' Maclaurin) spheroid]] whose eccentricity is, <math>~e = (1 - q^2)^{1 / 2}</math>.  What does the potential field look like from the perspective of a particle/fluid-element whose orbital angular momentum vector is tipped at an angle, <math>~i_0</math>, to the symmetry axis of the oblate-spheroidal potential?  Presumably the potential is "observed" to vary with position around the orbit as though the underlying potential is non-axisymmetric.  Does it appear to be the potential inside a Riemann S-Type ellipsoid?  If so, what values of <math>~(b/a, c/a)</math> correspond to the chosen parameter pair, <math>~(q, i_0</math>?
Let's continue to examine a collection of Lagrangian fluid elements that are orbiting in an (axisymmetric) oblate-spheroidal potential with flattening "q."  But rather than adopting  the Richstone potential, we will consider the [[User:Tohline/Apps/MaclaurinSpheroids#Gravitational_Potential|potential generated inside an homogeneous (''i.e.,'' Maclaurin) spheroid]] whose eccentricity is, <math>~e = (1 - q^2)^{1 / 2}</math>, namely,
 
<div align="center">
<p><math>
\Phi(\varpi,z) = -\pi G \rho \biggl[ I_\mathrm{BT} a_1^2 - \biggl(A_1 \varpi^2 + A_3 z^2 \biggr) \biggr],
</math>
</p>
[<b>[[User:Tohline/Appendix/References#ST83|<font color="red">ST83</font>]]</b>], &sect;7.3, p. 169, Eq. (7.3.1)
</div>
 
where, the coefficients <math>~A_1</math>, <math>~A_3</math>, and <math>~I_\mathrm{BT}</math> are functions only of the spheroid's eccentricity.  What does the potential field look like from the perspective of a particle/fluid-element whose orbital angular momentum vector is tipped at an angle, <math>~i_0</math>, to the symmetry axis of the oblate-spheroidal potential?  Presumably the potential is "observed" to vary with position around the orbit as though the underlying potential is non-axisymmetric.  Does it appear to be the potential inside a Riemann S-Type ellipsoid?  If so, what values of <math>~(b/a, c/a)</math> correspond to the chosen parameter pair, <math>~(q, i_0)</math>?
 
Well, let's define a primed (Cartesian) coordinate system whose z'-axis is tipped at this angle, <math>~i_0</math>, with respect to the symmetry axis of the oblate-spheroidal potential.  Drawing from a discussion in which we have presented a closely analogous [[User:Tohline/ThreeDimensionalConfigurations/RiemannTypeI#Methodical_Derivation_of_Orbital_Parameters|methodical derivation of orbital parameters]], we have,
<table border="1" align="center" cellpadding="10">
<tr>
<td align="center">
<table border="0" cellpadding="5" align="center">
 
<tr>
  <td align="right">
<math>~x'</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~x \, ,</math>
  </td>
</tr>
 
<tr>
  <td align="right">
<math>~y'</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~y \cos i_0 + (z-z_0)\sin i_0 \, ,</math>
  </td>
</tr>
 
<tr>
  <td align="right">
<math>~z'</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~(z-z_0)\cos i_0 - y\sin i_0 \, .</math>
  </td>
</tr>
</table>
 
</td>
<td align="center">
 
<table border="0" cellpadding="5" align="center">
 
<tr>
  <td align="right">
<math>~x</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~x' \, ,</math>
  </td>
</tr>
 
<tr>
  <td align="right">
<math>~y</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~y' \cos i_0 - z'\sin i_0 \, ,</math>
  </td>
</tr>
 
<tr>
  <td align="right">
<math>~z-z_0</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~z'\cos i_0 + y'\sin i_0 \, .</math>
  </td>
</tr>
</table>
 
</td>
</tr>
 
<tr>
<td align="center">
<table border="0" cellpadding="5" align="center">
 
<tr>
  <td align="right">
<math>~\dot{x}'</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\dot{x} \, ,</math>
  </td>
</tr>
 
<tr>
  <td align="right">
<math>~\dot{y}'</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\dot{y} \cos i_0 + \dot{z}\sin i_0 \, ,</math>
  </td>
</tr>
 
<tr>
  <td align="right">
<math>~\cancelto{0}{\dot{z}'}</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\dot{z} \cos i_0 - \dot{y}\sin i_0 \, .</math>
  </td>
</tr>
</table>
 
</td>
<td align="center">
 
<table border="0" cellpadding="5" align="center">
 
<tr>
  <td align="right">
<math>~\dot{x}</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\dot{x}' \, ,</math>
  </td>
</tr>
 
<tr>
  <td align="right">
<math>~\dot{y}</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\dot{y}' \cos i_0 - \cancelto{0}{\dot{z}'}\sin i_0 \, ,</math>
  </td>
</tr>
 
<tr>
  <td align="right">
<math>~\dot{z}</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\cancelto{0}{\dot{z}'}\cos i_0 + \dot{y}'\sin i_0 \, .</math>
  </td>
</tr>
</table>
 
</td>
</tr>
 
</table>
 
When viewed from this primed frame, the potential associated with a Maclaurin spheroid becomes,
<table border="0" cellpadding="5" align="center">
 
<tr>
  <td align="right">
<math>~(\pi G \rho)^{-1} \Phi(x', y', z') +  I_\mathrm{BT} a_1^2</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
A_1 \biggl[ (x')^2 + \biggl(y'\cos i_0 - z' \sin i_0\biggr)^2 \biggr]
+
A_3 \biggl[ z_0 + z' \cos i_0 + y' \sin i_0 \biggr]^2 
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
A_1 \biggl[ (x')^2 + (y')^2 \cos^2 i_0 + (z')^2 \sin^2 i_0 - 2(y' z')\sin i_0 \cos i_0\biggr]
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
&nbsp;
  </td>
  <td align="left">
<math>~
+
A_3 \biggl[ z_0^2 + 2 z' z_0 \cos i_0 + 2z_0 y' \sin i_0 + (z')^2 \cos^2 i_0 + 2y' z' \sin i_0 \cos i_0 + (y')^2 \sin^2 i_0  \biggr] 
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
A_1 (x')^2 + (y')^2 \biggl[A_1 \cos^2 i_0 + A_3 \sin^2 i_0 \biggr] + (z')^2 \biggl[ A_1 \sin^2 i_0 + A_3\cos^2 i_0 \biggr]
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
&nbsp;
  </td>
  <td align="left">
<math>~
+
z_0 A_3 \biggl[ z_0 + 2 z' \cos i_0 + 2 y' \sin i_0  \biggr] 
+
2(A_3 - A_1 )y' z' \sin i_0 \cos i_0 \, .
</math>
  </td>
</tr>
</table>


=See Also=
=See Also=

Latest revision as of 16:54, 2 April 2021


For Paul Fisher

Whitworth's (1981) Isothermal Free-Energy Surface
|   Tiled Menu   |   Tables of Content   |  Banner Video   |  Tohline Home Page   |

Overview of Dissertation

Paul Fisher's (1999) doctoral dissertation (accessible via the LSU Digital Commons) is titled, Nonaxisymmetric Equilibrium Models for Gaseous Galaxy Disks. Its abstract reads, in part:

Three-dimensional hydrodynamic simulations show that, in the absence of self-gravity, an axisymmetric, gaseous galaxy disk whose angular momentum vector is initially tipped at an angle, <math>~i_0</math>, to the symmetry axis of a fixed spheroidal dark matter halo potential does not settle to the equatorial plane of the halo. Instead, the disk settles to a plane that is tipped at an angle, <math>~\alpha = \tan^{-1}[q^2 \tan i_0]</math>, to the equatorial plane of the halo, where <math>~q</math> is the axis ratio of the halo equipotential surfaces. The equilibrium configuration to which the disk settles appears to be flat but it exhibits distinct nonaxisymmetric features. .

All three-dimensional hydrodynamic simulations employ Richstone's (1980) time-independent "axisymmetric logarithmic potential" that is prescribed by the expression,

<math>~\Phi(x, y, z)</math>

<math>~=</math>

<math>~ \frac{v_0^2}{2}~ \ln\biggl[x^2 + y^2 + \frac{z^2}{q^2} \biggr] \, . </math>

Thoughts Moving Forward

Let's continue to examine a collection of Lagrangian fluid elements that are orbiting in an (axisymmetric) oblate-spheroidal potential with flattening "q." But rather than adopting the Richstone potential, we will consider the potential generated inside an homogeneous (i.e., Maclaurin) spheroid whose eccentricity is, <math>~e = (1 - q^2)^{1 / 2}</math>, namely,

<math> \Phi(\varpi,z) = -\pi G \rho \biggl[ I_\mathrm{BT} a_1^2 - \biggl(A_1 \varpi^2 + A_3 z^2 \biggr) \biggr], </math>

[ST83], §7.3, p. 169, Eq. (7.3.1)

where, the coefficients <math>~A_1</math>, <math>~A_3</math>, and <math>~I_\mathrm{BT}</math> are functions only of the spheroid's eccentricity. What does the potential field look like from the perspective of a particle/fluid-element whose orbital angular momentum vector is tipped at an angle, <math>~i_0</math>, to the symmetry axis of the oblate-spheroidal potential? Presumably the potential is "observed" to vary with position around the orbit as though the underlying potential is non-axisymmetric. Does it appear to be the potential inside a Riemann S-Type ellipsoid? If so, what values of <math>~(b/a, c/a)</math> correspond to the chosen parameter pair, <math>~(q, i_0)</math>?

Well, let's define a primed (Cartesian) coordinate system whose z'-axis is tipped at this angle, <math>~i_0</math>, with respect to the symmetry axis of the oblate-spheroidal potential. Drawing from a discussion in which we have presented a closely analogous methodical derivation of orbital parameters, we have,

<math>~x'</math>

<math>~=</math>

<math>~x \, ,</math>

<math>~y'</math>

<math>~=</math>

<math>~y \cos i_0 + (z-z_0)\sin i_0 \, ,</math>

<math>~z'</math>

<math>~=</math>

<math>~(z-z_0)\cos i_0 - y\sin i_0 \, .</math>

<math>~x</math>

<math>~=</math>

<math>~x' \, ,</math>

<math>~y</math>

<math>~=</math>

<math>~y' \cos i_0 - z'\sin i_0 \, ,</math>

<math>~z-z_0</math>

<math>~=</math>

<math>~z'\cos i_0 + y'\sin i_0 \, .</math>

<math>~\dot{x}'</math>

<math>~=</math>

<math>~\dot{x} \, ,</math>

<math>~\dot{y}'</math>

<math>~=</math>

<math>~\dot{y} \cos i_0 + \dot{z}\sin i_0 \, ,</math>

<math>~\cancelto{0}{\dot{z}'}</math>

<math>~=</math>

<math>~\dot{z} \cos i_0 - \dot{y}\sin i_0 \, .</math>

<math>~\dot{x}</math>

<math>~=</math>

<math>~\dot{x}' \, ,</math>

<math>~\dot{y}</math>

<math>~=</math>

<math>~\dot{y}' \cos i_0 - \cancelto{0}{\dot{z}'}\sin i_0 \, ,</math>

<math>~\dot{z}</math>

<math>~=</math>

<math>~\cancelto{0}{\dot{z}'}\cos i_0 + \dot{y}'\sin i_0 \, .</math>

When viewed from this primed frame, the potential associated with a Maclaurin spheroid becomes,

<math>~(\pi G \rho)^{-1} \Phi(x', y', z') + I_\mathrm{BT} a_1^2</math>

<math>~=</math>

<math>~ A_1 \biggl[ (x')^2 + \biggl(y'\cos i_0 - z' \sin i_0\biggr)^2 \biggr] + A_3 \biggl[ z_0 + z' \cos i_0 + y' \sin i_0 \biggr]^2 </math>

 

<math>~=</math>

<math>~ A_1 \biggl[ (x')^2 + (y')^2 \cos^2 i_0 + (z')^2 \sin^2 i_0 - 2(y' z')\sin i_0 \cos i_0\biggr] </math>

 

 

<math>~ + A_3 \biggl[ z_0^2 + 2 z' z_0 \cos i_0 + 2z_0 y' \sin i_0 + (z')^2 \cos^2 i_0 + 2y' z' \sin i_0 \cos i_0 + (y')^2 \sin^2 i_0 \biggr] </math>

 

<math>~=</math>

<math>~ A_1 (x')^2 + (y')^2 \biggl[A_1 \cos^2 i_0 + A_3 \sin^2 i_0 \biggr] + (z')^2 \biggl[ A_1 \sin^2 i_0 + A_3\cos^2 i_0 \biggr] </math>

 

 

<math>~ + z_0 A_3 \biggl[ z_0 + 2 z' \cos i_0 + 2 y' \sin i_0 \biggr] + 2(A_3 - A_1 )y' z' \sin i_0 \cos i_0 \, . </math>

See Also


Whitworth's (1981) Isothermal Free-Energy Surface

© 2014 - 2021 by Joel E. Tohline
|   H_Book Home   |   YouTube   |
Appendices: | Equations | Variables | References | Ramblings | Images | myphys.lsu | ADS |
Recommended citation:   Tohline, Joel E. (2021), The Structure, Stability, & Dynamics of Self-Gravitating Fluids, a (MediaWiki-based) Vistrails.org publication, https://www.vistrails.org/index.php/User:Tohline/citation