Difference between revisions of "User:Tohline/Appendix/Ramblings/ForPaulFisher"
(5 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
<!-- __FORCETOC__ will force the creation of a Table of Contents --> | <!-- __FORCETOC__ will force the creation of a Table of Contents --> | ||
<!-- __NOTOC__ will force TOC off --> | <!-- __NOTOC__ will force TOC off --> | ||
__FORCETOC__ <!-- will force the creation of a Table of Contents --> | |||
<!-- __NOTOC__ will force TOC off --> | |||
=For Paul Fisher= | =For Paul Fisher= | ||
{{LSU_HBook_header}} | {{LSU_HBook_header}} | ||
==Overview of Dissertation== | ==Overview of Dissertation== | ||
Line 13: | Line 15: | ||
</td></tr></table> | </td></tr></table> | ||
All three-dimensional hydrodynamic simulations employ Richstone's (1980) time-independent "axisymmetric logarithmic potential" that is prescribed by the expression, | All three-dimensional hydrodynamic simulations employ [https://ui.adsabs.harvard.edu/abs/1980ApJ...238..103R/abstract Richstone's (1980)] time-independent "axisymmetric logarithmic potential" that is prescribed by the expression, | ||
<table border="0" cellpadding="5" align="center"> | <table border="0" cellpadding="5" align="center"> | ||
Line 26: | Line 28: | ||
<math>~ | <math>~ | ||
\frac{v_0^2}{2}~ \ln\biggl[x^2 + y^2 + \frac{z^2}{q^2} \biggr] \, . | \frac{v_0^2}{2}~ \ln\biggl[x^2 + y^2 + \frac{z^2}{q^2} \biggr] \, . | ||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
==Thoughts Moving Forward== | |||
Let's continue to examine a collection of Lagrangian fluid elements that are orbiting in an (axisymmetric) oblate-spheroidal potential with flattening "q." But rather than adopting the Richstone potential, we will consider the [[User:Tohline/Apps/MaclaurinSpheroids#Gravitational_Potential|potential generated inside an homogeneous (''i.e.,'' Maclaurin) spheroid]] whose eccentricity is, <math>~e = (1 - q^2)^{1 / 2}</math>, namely, | |||
<div align="center"> | |||
<p><math> | |||
\Phi(\varpi,z) = -\pi G \rho \biggl[ I_\mathrm{BT} a_1^2 - \biggl(A_1 \varpi^2 + A_3 z^2 \biggr) \biggr], | |||
</math> | |||
</p> | |||
[<b>[[User:Tohline/Appendix/References#ST83|<font color="red">ST83</font>]]</b>], §7.3, p. 169, Eq. (7.3.1) | |||
</div> | |||
where, the coefficients <math>~A_1</math>, <math>~A_3</math>, and <math>~I_\mathrm{BT}</math> are functions only of the spheroid's eccentricity. What does the potential field look like from the perspective of a particle/fluid-element whose orbital angular momentum vector is tipped at an angle, <math>~i_0</math>, to the symmetry axis of the oblate-spheroidal potential? Presumably the potential is "observed" to vary with position around the orbit as though the underlying potential is non-axisymmetric. Does it appear to be the potential inside a Riemann S-Type ellipsoid? If so, what values of <math>~(b/a, c/a)</math> correspond to the chosen parameter pair, <math>~(q, i_0)</math>? | |||
Well, let's define a primed (Cartesian) coordinate system whose z'-axis is tipped at this angle, <math>~i_0</math>, with respect to the symmetry axis of the oblate-spheroidal potential. Drawing from a discussion in which we have presented a closely analogous [[User:Tohline/ThreeDimensionalConfigurations/RiemannTypeI#Methodical_Derivation_of_Orbital_Parameters|methodical derivation of orbital parameters]], we have, | |||
<table border="1" align="center" cellpadding="10"> | |||
<tr> | |||
<td align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~x'</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~x \, ,</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math>~y'</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~y \cos i_0 + (z-z_0)\sin i_0 \, ,</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math>~z'</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~(z-z_0)\cos i_0 - y\sin i_0 \, .</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</td> | |||
<td align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~x</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~x' \, ,</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math>~y</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~y' \cos i_0 - z'\sin i_0 \, ,</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math>~z-z_0</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~z'\cos i_0 + y'\sin i_0 \, .</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~\dot{x}'</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\dot{x} \, ,</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math>~\dot{y}'</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\dot{y} \cos i_0 + \dot{z}\sin i_0 \, ,</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math>~\cancelto{0}{\dot{z}'}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\dot{z} \cos i_0 - \dot{y}\sin i_0 \, .</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</td> | |||
<td align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~\dot{x}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\dot{x}' \, ,</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math>~\dot{y}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\dot{y}' \cos i_0 - \cancelto{0}{\dot{z}'}\sin i_0 \, ,</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math>~\dot{z}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\cancelto{0}{\dot{z}'}\cos i_0 + \dot{y}'\sin i_0 \, .</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</td> | |||
</tr> | |||
</table> | |||
When viewed from this primed frame, the potential associated with a Maclaurin spheroid becomes, | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~(\pi G \rho)^{-1} \Phi(x', y', z') + I_\mathrm{BT} a_1^2</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
A_1 \biggl[ (x')^2 + \biggl(y'\cos i_0 - z' \sin i_0\biggr)^2 \biggr] | |||
+ | |||
A_3 \biggl[ z_0 + z' \cos i_0 + y' \sin i_0 \biggr]^2 | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
A_1 \biggl[ (x')^2 + (y')^2 \cos^2 i_0 + (z')^2 \sin^2 i_0 - 2(y' z')\sin i_0 \cos i_0\biggr] | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
| |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
+ | |||
A_3 \biggl[ z_0^2 + 2 z' z_0 \cos i_0 + 2z_0 y' \sin i_0 + (z')^2 \cos^2 i_0 + 2y' z' \sin i_0 \cos i_0 + (y')^2 \sin^2 i_0 \biggr] | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
A_1 (x')^2 + (y')^2 \biggl[A_1 \cos^2 i_0 + A_3 \sin^2 i_0 \biggr] + (z')^2 \biggl[ A_1 \sin^2 i_0 + A_3\cos^2 i_0 \biggr] | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
| |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
+ | |||
z_0 A_3 \biggl[ z_0 + 2 z' \cos i_0 + 2 y' \sin i_0 \biggr] | |||
+ | |||
2(A_3 - A_1 )y' z' \sin i_0 \cos i_0 \, . | |||
</math> | </math> | ||
</td> | </td> |
Latest revision as of 16:54, 2 April 2021
For Paul Fisher
| Tiled Menu | Tables of Content | Banner Video | Tohline Home Page | |
Overview of Dissertation
Paul Fisher's (1999) doctoral dissertation (accessible via the LSU Digital Commons) is titled, Nonaxisymmetric Equilibrium Models for Gaseous Galaxy Disks. Its abstract reads, in part:
Three-dimensional hydrodynamic simulations show that, in the absence of self-gravity, an axisymmetric, gaseous galaxy disk whose angular momentum vector is initially tipped at an angle, <math>~i_0</math>, to the symmetry axis of a fixed spheroidal dark matter halo potential does not settle to the equatorial plane of the halo. Instead, the disk settles to a plane that is tipped at an angle, <math>~\alpha = \tan^{-1}[q^2 \tan i_0]</math>, to the equatorial plane of the halo, where <math>~q</math> is the axis ratio of the halo equipotential surfaces. The equilibrium configuration to which the disk settles appears to be flat but it exhibits distinct nonaxisymmetric features. . |
All three-dimensional hydrodynamic simulations employ Richstone's (1980) time-independent "axisymmetric logarithmic potential" that is prescribed by the expression,
<math>~\Phi(x, y, z)</math> |
<math>~=</math> |
<math>~ \frac{v_0^2}{2}~ \ln\biggl[x^2 + y^2 + \frac{z^2}{q^2} \biggr] \, . </math> |
Thoughts Moving Forward
Let's continue to examine a collection of Lagrangian fluid elements that are orbiting in an (axisymmetric) oblate-spheroidal potential with flattening "q." But rather than adopting the Richstone potential, we will consider the potential generated inside an homogeneous (i.e., Maclaurin) spheroid whose eccentricity is, <math>~e = (1 - q^2)^{1 / 2}</math>, namely,
<math> \Phi(\varpi,z) = -\pi G \rho \biggl[ I_\mathrm{BT} a_1^2 - \biggl(A_1 \varpi^2 + A_3 z^2 \biggr) \biggr], </math>
[ST83], §7.3, p. 169, Eq. (7.3.1)
where, the coefficients <math>~A_1</math>, <math>~A_3</math>, and <math>~I_\mathrm{BT}</math> are functions only of the spheroid's eccentricity. What does the potential field look like from the perspective of a particle/fluid-element whose orbital angular momentum vector is tipped at an angle, <math>~i_0</math>, to the symmetry axis of the oblate-spheroidal potential? Presumably the potential is "observed" to vary with position around the orbit as though the underlying potential is non-axisymmetric. Does it appear to be the potential inside a Riemann S-Type ellipsoid? If so, what values of <math>~(b/a, c/a)</math> correspond to the chosen parameter pair, <math>~(q, i_0)</math>?
Well, let's define a primed (Cartesian) coordinate system whose z'-axis is tipped at this angle, <math>~i_0</math>, with respect to the symmetry axis of the oblate-spheroidal potential. Drawing from a discussion in which we have presented a closely analogous methodical derivation of orbital parameters, we have,
|
|
||||||||||||||||||
|
|
When viewed from this primed frame, the potential associated with a Maclaurin spheroid becomes,
<math>~(\pi G \rho)^{-1} \Phi(x', y', z') + I_\mathrm{BT} a_1^2</math> |
<math>~=</math> |
<math>~ A_1 \biggl[ (x')^2 + \biggl(y'\cos i_0 - z' \sin i_0\biggr)^2 \biggr] + A_3 \biggl[ z_0 + z' \cos i_0 + y' \sin i_0 \biggr]^2 </math> |
|
<math>~=</math> |
<math>~ A_1 \biggl[ (x')^2 + (y')^2 \cos^2 i_0 + (z')^2 \sin^2 i_0 - 2(y' z')\sin i_0 \cos i_0\biggr] </math> |
|
|
<math>~ + A_3 \biggl[ z_0^2 + 2 z' z_0 \cos i_0 + 2z_0 y' \sin i_0 + (z')^2 \cos^2 i_0 + 2y' z' \sin i_0 \cos i_0 + (y')^2 \sin^2 i_0 \biggr] </math> |
|
<math>~=</math> |
<math>~ A_1 (x')^2 + (y')^2 \biggl[A_1 \cos^2 i_0 + A_3 \sin^2 i_0 \biggr] + (z')^2 \biggl[ A_1 \sin^2 i_0 + A_3\cos^2 i_0 \biggr] </math> |
|
|
<math>~ + z_0 A_3 \biggl[ z_0 + 2 z' \cos i_0 + 2 y' \sin i_0 \biggr] + 2(A_3 - A_1 )y' z' \sin i_0 \cos i_0 \, . </math> |
See Also
- Type I Riemann Ellipsoids.
- Dimitris M. Christodoulou's (1989) doctoral dissertation (accessible via the LSU Digital Commons) titled, Using Tilted-Ring Models and Numerical Hydrodynamics to Study the Structure, Kinematics and Dynamics of HI Disks in Galaxies.
© 2014 - 2021 by Joel E. Tohline |