Difference between revisions of "User:Tohline/Apps/ReviewStahler83"
Line 173: | Line 173: | ||
===Determining the Gravitational Potential=== | ===Determining the Gravitational Potential=== | ||
In our extensive discussion of [[User:Tohline/Apps/DysonWongTori|Dyson-Wong tori]], we have included the expression for the [[User:Tohline/Apps/DysonWongTori#RingPotential|gravitational potential of a thin ring]] of mass, <math>~M</math>, that passes through the meridional plane at coordinate location, <math>~(\varpi^', z^') = (a, 0)</math>, as derived, for example, by [https://archive.org/details/foundationsofpot033485mbp O. D. Kellogg (1929)] and by [https://www.amazon.com/Theory-Potential-W-D-Macmillan/dp/0486604861/ref=sr_1_2?s=books&ie=UTF8&qid=1503444466&sr=1-2&keywords=the+theory+of+the+potential MacMillan (1958)], namely, | |||
<div align="center"> | <div align="center"> | ||
<table border="0" cellpadding="5" align="center"> | <table border="0" cellpadding="5" align="center"> | ||
Line 179: | Line 179: | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~\ | <math>~\Phi(\varpi, z)</math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 201: | Line 186: | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~ | ||
- \biggl[\frac{ | - \biggl[ \frac{2GMc}{\pi\rho_1}\biggr] K(k^2) | ||
</math> | </math> | ||
</td> | </td> | ||
Line 216: | Line 200: | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~ | ||
- \biggl[\frac{ | - \biggl[ \frac{2GM}{\pi } \biggr]\frac{1}{\sqrt{(\varpi+a)^2 + z^2}} \times K(k^2) \, , | ||
\times K | |||
</math> | </math> | ||
</td> | </td> | ||
Line 223: | Line 206: | ||
</table> | </table> | ||
</div> | </div> | ||
where, | |||
<div align="center"> | <div align="center"> | ||
Line 231: | Line 213: | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~ | <math>~k^2</math> | ||
</td> | |||
<td align="center"> | <td align="center"> | ||
<math>~=</math> | <math>~=</math> | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~ | ||
\frac{4a\varpi }{(\varpi+a)^2 + z^2} \, . | |||
</math> | |||
</td> | </td> | ||
</tr> | </tr> | ||
Line 249: | Line 227: | ||
</div> | </div> | ||
and | According to [http://adsabs.harvard.edu/abs/1983ApJ...268..155S Stahler (1983a)], the contribution to the gravitational potential at coordinate location <math>~(\varpi, z)</math> due to a differential mass element, <math>~\delta M</math>, located at coordinate <math>~(\varpi^', z^')</math> is (see his equation 11 and the explanatory text that follows it): | ||
<div align="center"> | <div align="center"> | ||
<table border="0" cellpadding="5" align="center"> | <table border="0" cellpadding="5" align="center"> | ||
Line 255: | Line 233: | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~ | <math>~\delta\Phi_g(\varpi,z)</math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 262: | Line 240: | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~ | ||
- \biggl[\frac{2}{\pi \varpi^'}\biggr] \frac{\delta M}{[(\alpha + 1)^2 + \beta^2]^{1 / 2}} | |||
\times K\biggl\{ \biggl[ \frac{4\alpha}{(\alpha+1)^2 + \beta^2} \biggr]^{1 / 2} \biggr\} | |||
</math> | </math> | ||
</td> | </td> | ||
Line 270: | Line 249: | ||
<td align="right"> | <td align="right"> | ||
| | ||
</td> | |||
<td align="center"> | <td align="center"> | ||
<math>~=</math> | <math>~=</math> | ||
Line 276: | Line 255: | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~ | ||
- \biggl[\frac{2}{\pi }\biggr] \frac{\delta M}{[(\varpi^' \alpha + \varpi^')^2 + (\varpi^' \beta)^2]^{1 / 2}} | |||
\times K\biggl\{ \biggl[ \frac{4\alpha (\varpi^')^2}{(\varpi^' \alpha+\varpi^')^2 + (\varpi^' \beta)^2} \biggr]^{1 / 2} \biggr\} | |||
</math> | </math> | ||
</td> | </td> | ||
Line 284: | Line 264: | ||
<td align="right"> | <td align="right"> | ||
| | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math>~=</math> | <math>~=</math> | ||
Line 304: | Line 270: | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~ | ||
\frac{ | - \biggl[\frac{2}{\pi }\biggr] \frac{\delta M}{[(\varpi + \varpi^')^2 + (z^' - z)^2]^{1 / 2}} | ||
\times K\biggl\{ \biggl[ \frac{4\varpi \varpi^'}{(\varpi +\varpi^')^2 + (z^' - z)^2} \biggr]^{1 / 2} \biggr\} \, . | |||
</math> | </math> | ||
</td> | </td> |
Revision as of 01:26, 5 April 2018
Stahler's (1983) Rotationally Flattened Isothermal Configurations
Consider the collapse of an isothermal cloud (characterized by isothermal sound speed, <math>~c_s</math>) that is initially spherical, uniform in density, uniformly rotating <math>~(\Omega_0)</math>, and embedded in a tenuous intercloud medium of pressure, <math>~P_e</math>. Now suppose that the cloud maintains perfect axisymmetry as it collapses and that <math>~c_s</math> never changes at any fluid element. To what equilibrium state will this cloud collapse if the specific angular momentum of every fluid element is conserved? In a paper titled, The Equilibria of Rotating, Isothermal Clouds. I. - Method of Solution, S. W. Stahler (1983a, ApJ, 268, 155 - 184) describes a numerical scheme — a self-consistent-field technique — that he used to construct such equilibrium states.
In what follows, lines of text that appear in a dark green font have been extracted verbatim from Stahler (1983a).
| Tiled Menu | Tables of Content | Banner Video | Tohline Home Page | |
Governing Equations
Stahler (1983a) states that the equilibrium configuration is found by solving the equation for momentum balance together with Poisson's equation for the gravitational potential, <math>~\Phi_g</math>. Stahler chooses to use the integral form of Poisson's equation to define the gravitational potential, namely (see his equation 10, but note the sign change and "pink comment" shown here on the right),
<math>~ \Phi_g(\vec{x})</math> |
<math>~=</math> |
<math>~ - G \int \frac{\rho(\vec{x}^{~'})}{|\vec{x}^{~'} - \vec{x}|} d^3x^' \, .</math> |
As is clear from our separate discussion of the origin of Poisson's equation, this matches the expression for the scalar gravitational potential that is widely used in astrophysics.
Working in cylindrical coordinates <math>~(\varpi, z)</math> — as we have explained elsewhere, the assumption of axisymmetry eliminates the azimuthal angle — Stahler states that the momentum equation is (see his equation 2):
<math>~\frac{\nabla P}{\rho} + \nabla\Phi_g + \nabla\Phi_c</math> |
<math>~=</math> |
<math>~0 \, ,</math> |
where, <math>~\nabla \equiv (\partial/\partial\varpi, \partial/\partial z)</math>, and the centrifugal potential is given by (see Stahler's equation 3, but note the sign change and "pink comment" shown here on the right):
<math>~\Phi_c(\varpi)</math> |
<math>~\equiv</math> |
<math>~- \int_0^\varpi \frac{j^2(\varpi^') d\varpi^'}{(\varpi^')^3} \, , </math> |
where <math>~j</math> is the z-component of the angular momentum per unit mass. This last expression is precisely the same expression for the centrifugal potential that we have defined in the context of our discussion of simple rotation profiles. As Stahler stresses, by adopting a centrifugal potential of this form, he is implicitly assuming that <math>~j</math> is not a function of <math>~z</math>; this builds in the physical constraint enunciated by the Poincaré-Wavre theorem, which guarantees that rotational velocity is constant on cylinders for the equilibrium of any barotropic fluid.
As we have demonstrated in our overview discussion of axisymmetric configurations, the equations that govern the equilibrium properties of axisymmetric structures are,
|
Let's compare this set of governing equations with the ones used by Stahler (1983a).
Scalar Virial Theorem
In an accompanying chapter where global energy considerations are explored, we have followed Shu's (1992) lead and have derived what we have referred to as a,
Generalized Scalar Virial Theorem
<math>~~2 (T_\mathrm{kin} + S_\mathrm{therm}) + W_\mathrm{grav} + \mathcal{M}</math> |
<math>~=</math> |
<math> ~P_e \oint \vec{x}\cdot \hat{n} dA - \oint \vec{x}\cdot \overrightarrow{T}\hat{n} dA \, .</math> |
Shu92, p. 331, Eq. (24.12) |
<math>~2S_\mathrm{therm} = 3 \int_V P d^3x \, ,</math>
and ignoring magnetic field effects — that is, zeroing out <math>~\mathcal{M}</math> and the surface integral involving <math>~\overrightarrow{T}</math> — this generalized scalar virial theorem becomes,
<math>~~2 T_\mathrm{kin} + 3 \int_V P d^3x + W_\mathrm{grav} </math> |
<math>~=</math> |
<math> ~P_e \oint \vec{x}\cdot \hat{n} dA \, .</math> |
This exactly matches Stahler's expression for the scalar virial theorem (see his equation 16), if the external pressure, <math>~P_e</math>, is assumed to be uniform across the surface of the equilibrium configuration.
Solution Technique
Following exactly along the lines of the HSCF technique that has been described in an accompanying chapter,
Determining the Gravitational Potential
In our extensive discussion of Dyson-Wong tori, we have included the expression for the gravitational potential of a thin ring of mass, <math>~M</math>, that passes through the meridional plane at coordinate location, <math>~(\varpi^', z^') = (a, 0)</math>, as derived, for example, by O. D. Kellogg (1929) and by MacMillan (1958), namely,
<math>~\Phi(\varpi, z)</math> |
<math>~=</math> |
<math>~ - \biggl[ \frac{2GMc}{\pi\rho_1}\biggr] K(k^2) </math> |
|
<math>~=</math> |
<math>~ - \biggl[ \frac{2GM}{\pi } \biggr]\frac{1}{\sqrt{(\varpi+a)^2 + z^2}} \times K(k^2) \, , </math> |
where,
<math>~k^2</math> |
<math>~=</math> |
<math>~ \frac{4a\varpi }{(\varpi+a)^2 + z^2} \, . </math> |
According to Stahler (1983a), the contribution to the gravitational potential at coordinate location <math>~(\varpi, z)</math> due to a differential mass element, <math>~\delta M</math>, located at coordinate <math>~(\varpi^', z^')</math> is (see his equation 11 and the explanatory text that follows it):
<math>~\delta\Phi_g(\varpi,z)</math> |
<math>~=</math> |
<math>~ - \biggl[\frac{2}{\pi \varpi^'}\biggr] \frac{\delta M}{[(\alpha + 1)^2 + \beta^2]^{1 / 2}} \times K\biggl\{ \biggl[ \frac{4\alpha}{(\alpha+1)^2 + \beta^2} \biggr]^{1 / 2} \biggr\} </math> |
|
<math>~=</math> |
<math>~ - \biggl[\frac{2}{\pi }\biggr] \frac{\delta M}{[(\varpi^' \alpha + \varpi^')^2 + (\varpi^' \beta)^2]^{1 / 2}} \times K\biggl\{ \biggl[ \frac{4\alpha (\varpi^')^2}{(\varpi^' \alpha+\varpi^')^2 + (\varpi^' \beta)^2} \biggr]^{1 / 2} \biggr\} </math> |
|
<math>~=</math> |
<math>~ - \biggl[\frac{2}{\pi }\biggr] \frac{\delta M}{[(\varpi + \varpi^')^2 + (z^' - z)^2]^{1 / 2}} \times K\biggl\{ \biggl[ \frac{4\varpi \varpi^'}{(\varpi +\varpi^')^2 + (z^' - z)^2} \biggr]^{1 / 2} \biggr\} \, . </math> |
© 2014 - 2021 by Joel E. Tohline |