Difference between revisions of "User:Tohline/H BookTiledMenu"
Line 231: | Line 231: | ||
===Nonlinear Dynamical Evolution=== | ===Nonlinear Dynamical Evolution=== | ||
{| class="wikitable" style="margin-right: auto; margin-left: 75px; border-style: solid; border-width: 3px border-color: black" | {| class="wikitable" style="margin-right: auto; margin-left: 75px; border-style: solid; border-width: 3px; border-color: black" | ||
|- | |- | ||
! style="height: 150px; width: 150px; background-color:#ffff99;;" |[[User:Tohline/SSC/FreeFall#Free-Fall|<b>Free-Fall<br />Collapse</b>]] | ! style="height: 150px; width: 150px; background-color:#ffff99;;" |[[User:Tohline/SSC/FreeFall#Free-Fall|<b>Free-Fall<br />Collapse</b>]] | ||
|} | |} | ||
<p> </p> | <p> </p> | ||
{| class="wikitable" style="margin-right: auto; margin-left: 75px; border-style: solid; border-width: 3px border-color: black" | {| class="wikitable" style="margin-right: auto; margin-left: 75px; border-style: solid; border-width: 3px; border-color: black" | ||
|- | |- | ||
! style="height: 150px; width: 150px; background-color:#ffff99; border-right:2px solid black;" |[[User:Tohline/SSC/IsothermalCollapse#Collapse_of_Isothermal_Spheres|<b>Collapse of<br />Isothermal<br />Spheres</b>]] | ! style="height: 150px; width: 150px; background-color:#ffff99; border-right:2px solid black;" |[[User:Tohline/SSC/IsothermalCollapse#Collapse_of_Isothermal_Spheres|<b>Collapse of<br />Isothermal<br />Spheres</b>]] | ||
Line 245: | Line 245: | ||
|} | |} | ||
<p> </p> | <p> </p> | ||
{| class="wikitable" style="margin-right: auto; margin-left: 75px; border-style: solid; border-width: 3px border-color: black" | {| class="wikitable" style="margin-right: auto; margin-left: 75px; border-style: solid; border-width: 3px; border-color: black" | ||
|- | |- | ||
! style="height: 150px; width: 150px; background-color:#ffff99;" |[[User:Tohline/Apps/GoldreichWeber80#Homologously_Collapsing_Stellar_Cores|<b>Collapse of<br />an Isolated<br />n = 3<br />Polytrope</b>]] | ! style="height: 150px; width: 150px; background-color:#ffff99;" |[[User:Tohline/Apps/GoldreichWeber80#Homologously_Collapsing_Stellar_Cores|<b>Collapse of<br />an Isolated<br />n = 3<br />Polytrope</b>]] |
Revision as of 23:49, 6 August 2017
Tiled Menu
| Tiled Menu | Tables of Content | Banner Video | Tohline Home Page | |
Context
Global Energy Considerations |
---|
Principal Governing Equations (PGEs) |
Continuity | Euler | 1st Law of Thermodynamics |
Poisson |
---|
Equation of State (EOS) |
Total Pressure |
---|
Spherically Symmetric Configurations
Structural Form Factors |
Free-Energy of Spherical Systems |
---|
One-Dimensional PGEs |
---|
Equilibrium Structures
Scalar Virial Theorem |
---|
Hydrostatic Balance Equation |
Solution Strategies |
---|
Isothermal Sphere |
via Direct Numerical Integration |
---|
Isolated Polytropes |
Known Analytic Solutions |
via Direct Numerical Integration |
via Self-Consistent Field (SCF) Technique |
---|
Zero-Temperature White Dwarf |
Chandrasekhar Limiting Mass (1935) |
---|
Pressure-Truncated Configurations |
Bonnor-Ebert (Isothermal) Spheres (1955 - 56) |
Polytropes | Equilibrium Sequence Turning-Points |
---|
Stability Analysis
Variational Principle |
---|
Radial Pulsation Equation |
Example Derivations & Statement of Eigenvalue Problem |
Relationship to Sound Waves |
---|
Uniform-Density Configurations |
Sterne's Analytic Sol'n of Eigenvalue Problem (1937) |
---|
Pressure-Truncated Isothermal Spheres |
|
via Direct Numerical Integration |
---|
Yabushita's Analytic Sol'n for Marginally Unstable Configurations (1974) |
|
---|
Polytropes |
|
Isolated n = 3 Polytrope |
Pressure-Truncated Configurations |
---|
B-KB74 Conjecture |
Variational Principle |
Exact Demonstration for Pressure-Truncated n = 5 Polytropes |
---|
Our Analytic Sol'n for Marginally Unstable Configurations (2017) |
|
---|
Nonlinear Dynamical Evolution
Free-Fall Collapse |
---|
Collapse of Isothermal Spheres |
via Direct Numerical Integration |
Similarity Solution |
---|
Collapse of an Isolated n = 3 Polytrope |
---|
See Also
© 2014 - 2021 by Joel E. Tohline |