
VisTrails Documentation
Release 2.0.3

NYU Poly

March 31, 2014

CONTENTS

I User’s Guide 1

1 Preliminary Pages 3
1.1 Preface . 3

2 An Introduction to VisTrails 5
2.1 What Is VisTrails? . 5
2.2 Getting Started . 6

3 Learning VisTrails By Example 15
3.1 Creating and Modifying Workflows . 15
3.2 Groups and Subworkflows . 23
3.3 Interacting with the Version Tree . 27
3.4 Merging Two Version Trees . 32
3.5 Querying the Version Tree . 32
3.6 Spreadsheet . 38
3.7 Using Analogies to Update Workflows . 44
3.8 Parameter Exploration . 50
3.9 Provenance Browser . 57
3.10 Mashups . 59
3.11 Module Descriptions and Examples . 61

4 Intermediate Concepts and VisTrails Packages 71
4.1 Control Flow in VisTrails . 71
4.2 The Control Flow Assistant . 81
4.3 Connecting to a Database . 86
4.4 Example: Web Services . 90
4.5 Persistence in VisTrails . 93
4.6 VisTrails Server Setup . 97
4.7 Embedding VisTrails Files Via Latex . 102

II Developer’s Guide 107

5 Writing VisTrails Packages 109
5.1 Introduction . 109
5.2 Who Should Read This Chapter? . 109
5.3 A Simple Example . 109
5.4 Creating Reloadable Packages . 114
5.5 Wrapping Command-line tools . 115

i

5.6 Interfacing with the VisTrails Menu . 118
5.7 Interpackage Dependencies . 119
5.8 Package Requirements . 120
5.9 Interaction with Caching . 121
5.10 Customizing Modules and Ports . 122
5.11 Generating Modules Dynamically . 125
5.12 For System Administrators . 127

6 Command-line Arguments 129
6.1 Starting VisTrails via the Command Line . 129
6.2 Specifying a User Configuration Directory . 131
6.3 Passing Database Parameters on the Command Line . 131
6.4 Running VisTrails in Batch Mode . 132
6.5 Executing Workflows in Parallel . 134
6.6 Finding Methods Via the Command Line . 135

7 Accessing the Execution Log 137

8 Example: ITK 139
8.1 Introduction to ITK . 139
8.2 Preparing ITK . 139
8.3 ITK and VisTrails . 141

9 Creating a Control Flow Loop Module 145
9.1 Building your own loop structure . 145

10 Wrapping command line tools using package CLTools 149
10.1 Package CLTools . 149

III Indices and tables 157

Bibliography 161

Index 163

ii

Part I

User’s Guide

1

CHAPTER

ONE

PRELIMINARY PAGES

1.1 Preface

Welcome to the VisTrails User’s Guide. This book has been updated for version 2.0.0 of the VisTrails software.

VisTrails is a new scientific workflow management system developed at the University of Utah that provides support for
data exploration and visualization. For an engineer or scientist, generating and evaluating hypotheses is an interactive
process. With each change, a different, albeit related, workflow is created. VisTrails was designed to manage these
rapidly-evolving workflows. By automatically managing the data, metadata, and the data exploration process, VisTrails
allows you to focus on the task at hand and relieves you from tedious and time-consuming tasks involved in organizing
vast volumes of data. VisTrails provides infrastructure that can be combined with and enhance existing visualization
and workflow systems.

VisTrails is an open-source software system. You can contribute to VisTrails by sharing bug reports, bug fixes, and
suggestions with the VisTrails community. The easiest way to get started is to sign up for the VisTrails Users mailing
list. Instructions for doing this can be found on the VisTrails web site: www.vistrails.org.

This book is divided into four parts. The first part, Introduction to VisTrails, provides instructions on how
to download and install the VisTrails software, and introduces you to its user interface. The second and longest part,
“Learning VisTrails by Example,” consists of a number of tutorial chapters that guide you, step by step, through the
features of VisTrails. We encourage you to try out these examples for yourself as you read this book. The third part
provides information on additional features and packages. The forth and final part is the “Developer’s Guide” and is
intended for programmers who wish to add new features, packages, and modules to VisTrails.

We hope that you will find VisTrails to be a useful tool towards automating and streamlining your workflows, leading
to faster discoveries and deeper insight.

For your convenience, the html version of this manual is also available at http://www.vistrails.org/usersguide.

About the figures: VisTrails works across multiple platforms, and the screenshots shown in this manual reflect this.
Hence, some of the images in this book may vary slightly from what you see on your system, depending on the look
and feel of your platform.

1.1.1 Acknowledgements

VisTrails research and development has been funded the Department of Energy SciDAC (VACET and SDM centers),
the National Science Foundation (grants IIS-0746500, CNS-0751152, IIS-0713637, OCE-0424602, IIS-0534628,
CNS-0514485, IIS-0513692, CNS-0524096, CCF-0401498, OISE-0405402, CCF-0528201, CNS-0551724), and IBM
Faculty Awards (2005, 2006, 2007, and 2008).

3

http://www.vistrails.org/usersguide

VisTrails Documentation, Release 2.0.3

4 Chapter 1. Preliminary Pages

CHAPTER

TWO

AN INTRODUCTION TO VISTRAILS

2.1 What Is VisTrails?

VisTrails is a new system that provides data and process management support for exploratory computational tasks. It
combines features of both workflow and visualization systems. Similar to workflow systems, it allows the combination
of loosely-coupled resources, specialized libraries, and grid and Web services. Similar to some visualization systems,
it provides a mechanism for parameter exploration and comparison of different results. But unlike these other systems,
VisTrails was designed to manage exploratory processes in which computational tasks evolve over time as a user
iteratively formulates and tests hypotheses. A key distinguishing feature of VisTrails is its comprehensive provenance
infrastructure that maintains detailed history information about the steps followed in the course of an exploratory task.
VisTrails leverages this information to provide novel operations and user interfaces that streamline this process.

2.1.1 Important Features

One of our main uses for VisTrails has been exploratory visualization, but the system is much more general and
provides many other features, such as:

• Flexible Provenance Architecture. VisTrails transparently tracks changes made to workflows, including all the
steps followed in the exploration. The system can optionally track run-time information about the execution
of workflows (e.g., who executed a module, on which machine, elapsed time etc.). VisTrails also provides a
flexible annotation framework whereby you can specify application-specific provenance information.

• Querying and Re-using History. The provenance information is stored in a structured way. You have a choice of
using a relational database (such as MySQL or IBM DB2) or XML files in the file system. The system provides
flexible and intuitive query interfaces through which you can explore and reuse provenance information. You
can formulate simple keyword-based and selection queries (e.g., find a visualization created by a given user) as
well as structured queries (e.g., find visualizations that apply simplification before an isosurface computation
for irregular grid data sets).

• Support for collaborative exploration. The system can be configured with a database backend that can be
used as a shared repository. It also provides a synchronization facility that allows multiple users to collaborate
asynchronously and in a disconnected fashion—you can check in and check out changes, akin to a version
control system (e.g., SVN: http://subversion.tigris.org).

• Extensibility. VisTrails provides a very simple plugin functionality that can be used to dynamically add packages
and libraries. Neither changes to the user interface nor re-compilation of the system are necessary. Because
VisTrails is written in Python, the integration of Python-wrapped libraries is straightforward. For example, a
single line in the VisTrails start-up file is needed to import all of VTK’s classes.

• Scalable Derivation of Data Products and Parameter Exploration. VisTrails supports a series of operations for
the simultaneous generation of multiple data products, including an interface that allows you to specify sets of

5

http://subversion.tigris.org

VisTrails Documentation, Release 2.0.3

values for different parameters in a workflow. The results of a parameter exploration can be displayed side by
side in the VisTrails Spreadsheet for easy comparison.

• Task Creation by Analogy. Analogies are supported as first-class operations to guide semi-automated changes
to multiple workflows, without requiring you to directly manipulate or edit the workflow specifications.

2.1.2 Obtaining the software

Visit http://www.vistrails.org to access the VisTrails community website. Here you will find information including
instructions for obtaining the software, online documentation, video tutorials, and pointers to papers and presentations.

VisTrails is available as open source; it is released under the GPL 2.0 license. The pre-compiled versions for Windows
and Mac OS X come with an installer and include a number of packages, including VTK, matplotlib, and Image
Magick. Additional packages, including packages written by users, are also available (e.g., ITK, Matlab, Metro).
Developers can easily add new packages using the VisTrails plugin infrastructure.

2.2 Getting Started

The VisTrails system is distributed both as source code and pre-built binaries, and instructions for obtaining either can
be found at our website: http://www.vistrails.org. Because the system is written in Python using a Qt interface, it can
be run on most architectures that support these two components, even if a pre-built binary is not available for your
system. Section Installation provides instructions to guide you through installation procedures, and Section Quick
Start gives a quick orientation and serves as a springboard for exploring the different features of VisTrails.

2.2.1 Installation

There are two types of VisTrails installations. The first is a binary installation that lets you use VisTrails by running the
precompiled executable. The second is a full source code installation that requires you to install and compile VisTrails
and all of its dependencies. Of the two types of installations, the binary version is much easier, and we encourage first-
time users to use this option whenever possible. Precompiled binaries are currently available for Microsoft Windows
(XP and Vista) and Mac OS X (10.5.x or higher). To obtain either a binary or source copy of VisTrails, please see our
website: http://www.vistrails.org.

Installing VisTrails on Windows XP/Vista

To install VisTrails on Windows, download the installation bundle for Windows from the VisTrails website:
http://www.vistrails.org. Unzip the file using the decompression program of your choice, then double-click the ex-
ecutable to begin installation (Figure Installation wizard for Microsoft Windows XP/Vista). Follow the prompts in the
installation wizard to complete the installation process.

Installing VisTrails on Mac OS X

To install VisTrails on Mac OS X, download the installation bundle for Mac from the VisTrails website:
http://www.vistrails.org. The precompiled binary currently only supports Mac OS X 10.5.x or higher. The disk image
should be mounted automatically (Figure Installing VisTrails on Mac OS X). Once the disk image is mounted, drag
the VisTrails folder to the Applications folder to install the software.

6 Chapter 2. An Introduction to VisTrails

http://www.vistrails.org
http://www.vistrails.org
http://www.vistrails.org
http://www.vistrails.org
http://www.vistrails.org

VisTrails Documentation, Release 2.0.3

Figure 2.1: Installation wizard for Microsoft Windows XP/Vista.

Figure 2.2: Installing VisTrails on Mac OS X.

2.2. Getting Started 7

VisTrails Documentation, Release 2.0.3

Installing VisTrails on Ubuntu Linux

Although not a binary installation per se, installing VisTrails on Ubuntu Linux is nonetheless quite straightforward.
VisTrails now interfaces with “apt” directly via a Python API. This allows dynamic installation of necessary packages.
As a result, you do not need to manually install any of the dependent packages. Just download the VisTrails source
code and execute it with:

python vistrails.py

and VisTrails should detect all necessary software and, if necessary, ask for your permission to install it.

Installing VisTrails from source

Installing VisTrails from source code is a non-trivial task. Rather than listing full compilation instructions in this
manual, we instead provide a list of software packages upon which VisTrails is dependent, and refer you to the
VisTrails website for additional details.

• Python 2.6 or higher

• Qt 4.4 or higher

• PyQt4

• SciPy

• VTK (needed to run the examples in this book)

There may also be additional dependencies, depending on which optional features of VisTrails you plan to use.

Please refer to http://www.vistrails.org/index.php/Mac_Intel_Instructions for more details.

2.2.2 Quick Start

On Windows and Mac OS X, you can launch VisTrails by double-clicking on the VisTrails application icon. In general,
however, it is possible to start VisTrails on any system by navigating to the directory where the file vistrails.py
is located (usually the root directory of your installation) and executing the command:

python vistrails.py

Depending on a number of factors, it can take a few seconds for the system to start up. As VisTrails loads, you may
see some messages that detail the packages being loaded and initialized. This is normal operation, but if the system
fails to load, these messages will provide information that may help you understand why.

2.2.3 Installing additional packages

VisTrails releases come with a number of packages already installed. In addition to these, you can write your own
packages or install packages from third-party developers. To do that, just drop the Python module (single file) or
package (i.e. directory) in $HOME/.vistrails/userpackages/ (VisTrails should automatically create this
folder on the first run).

You can then enable and disable standard or user packages from the preferences dialog, under the module packages
tab.

8 Chapter 2. An Introduction to VisTrails

http://www.vistrails.org/index.php/Mac_Intel_Instructions

VisTrails Documentation, Release 2.0.3

2.2.4 The Vistrails Builder Window

After everything has loaded, you will see the VisTrails Builder window as shown in Figure VisTrails Builder Window.
If you have enabled the VisTrails Spreadsheet (Packages → VisTrails Spreadsheet → Show Spreadsheet), you will
also see a second window like that in Figure VisTrails Spreadsheet Window. Note that if the spreadsheet window is
not visible, it will open upon execution of a workflow that uses it.

Figure 2.3: VisTrails Builder Window

The VisTrails Toolbar

The VisTrails toolbar both allows you to execute the current workflow or function, and switch between various modes.
A brief description of each member of the toolbar follows:

Pipeline This view shows the current workflow. See Chapter Creating and Modifying Workflows for information about
creating a workflow.

History This view shows different versions of the workflow(s) as it has progressed over time. See Chapter Interacting
with the Version Tree.

Search Use this mode to search for modules or subpipeline within the current version, the current vistrail, or all
vistrails. See Chapter Querying the Version Tree.

Explore This option allows you to select one or more parameter(s) for which a set of values is created. The workflow
is then executed once for each value in the set and displayed in the spreadsheet for comparison purposes. See Chapter
Parameter Exploration.

Provenance The Provenance mode shows the user a given vistrail’s execution history. When a particular execution
is selected, its pipeline view with modules colored according to its associated execution result is shown. See Chapter
Provenance Browser.

Mashup The Mashup mode allows you to create a small application that allows you to explore different values for a
selected set of parameters. See Chapter Mashups for more information.

2.2. Getting Started 9

VisTrails Documentation, Release 2.0.3

Figure 2.4: VisTrails Spreadsheet Window

Figure 2.5: VisTrails Toolbar

10 Chapter 2. An Introduction to VisTrails

VisTrails Documentation, Release 2.0.3

Execute Execute will either execute the current pipeline when the Pipeline, History, or Provenance views
are selected, or perform the search or exploration when in Search or Exploration mode. This button is disabled
for Mashup mode, or when there is not a current workflow to execute.

The New, Open, and Save buttons will create, open, and save a vistrail, as expected.

Palettes and Associated Views

Palettes

As you can see, the builder window has a center widget with a palette on each side. There are a number of views
(listed in the 4th group of the views menu) that when made visible, will be opened in these palettes. In this section,
we will discuss how the views are arranged.

Notice that when VisTrails first launches the builder window, both palettes contain two views. The left palette is split
so both views are visible, whereas the right palette uses tabs to display one view at a time. By default, additional views
will be shown in the right, and lower left panels when they are made visible. To make a view visible, either switch
to a mode that requires it, or select it from the views menu. For example, the Mashup mode will add the Mashup
Pipeline and Mashups Inspector views to the panels. When the mode is changed from Mashup, these two
views will be removed (hidden).

Buttons

Notice that there is a button with a pin icon in the upper right corner of each view (see Figure Buttons - Close, Detach,
and Pin). If you don’t want a view to disappear when you change modes, make sure it is pinned. When the pin points
up, it is unpinned and the view is likely to disappear when you change modes.

The other two buttons, the one with the ‘X’ and the one with the rectangular outlines (see Figure Buttons - Close,
Detach, and Pin), will either close the view, or undock the view, depending on which one you push. Alternatively, you
may undock a view by clicking on the view’s title bar and pulling it out of the palette. The view can then either remain
in its own window, or can be docked by placing it in either palette.

Figure 2.6: Buttons - Close, Detach, and Pin

View Locations

The following table gives the view that is visible in each palette for each of the main views/modes:

Lower Left Palette Right Palette
Pipeline Modules Module Information
History Modules Properties
Explore Explore Properties Set Methods
Provenance Modules Log Details
Mashup Mashups Inspector Mashup Pipeline

Notice that the Workspace, Diff Properties, and Vistrail Variables views are not in the table. That
is because, the Workspace view is always visible, the Diff Properties view opens in the right palette when
a visual diff is performed in the History view, and the Vistrail Variables view is opened from the Views
menu. Note: with the Vistrail Variables view especially, if you don’t want it to disappear, you should make
sure it is pinned.

2.2. Getting Started 11

VisTrails Documentation, Release 2.0.3

The Center Widget

The center widget is somewhat larger than the side panels as it is intended to be the main workspace. It dis-
plays the following views: Pipeline, History, Search- query and results, Visual Diff results, Explore,
Provenance, and Mashup. By default, one view is shown. To open an additional view, type CTRL-t to create a
new tab. The new tab starts out in the Pipeline view, but you are free to change it to any of the other views. Note
that the tabs from only one vistrail are displayed at a time. When you switch to a different vistrail, the other vistrail’s
set of open tabs are displayed.

If you would like to see views from more than one vistrail at a time, you may do this by right-clicking on the vistrail
(listed in Current Vistrails of the Workspace view), and selecting the option to open in a new window.
The side palettes will stay with the original window, but can be moved to the current window by selecting Dock
Palettes from the Views menu.

If you would like to see multiple views from the same vistrail, double-click the title of the view to detach it. It is not
possible to reattach the view, so once you are finished with the detached view, you may close it. If you would like the
view to be reattached, you should close it and open it again in a new tab.

2.2.5 Manipulating VisTrails Files

To open a VisTrails file, or vistrail, you can either click the Open button in the toolbar or select Open from the File
menu. This brings up a standard file dialog where you can select a vistrail to open. Vistrails are identified by the .vt
file extension. Alternatively, if the vistrail is listed under My Vistrails in the Workspace Panel, double clicking its
name will open it. When a vistrail is opened, it is listed in the Workspace (upper left panel) under Current Vistrails.
Since only one open vistrail is displayed at a time, the Workspace allows you to select which one to display. Vistrails
can also be stored in a database, enabling a central repository for workflows. See Chapter Connecting to a Database
for more details about this feature.

To close a vistrail, you can either choose the Close option from the File menu or type Ctrl-w. If the vistrail has not
been saved, you will be asked if you wish to save your work. To save a vistrail, there is both a button and a menu item
in the File menu. If you would like to save the vistrail with a different name or in a different location, you can use
the Save As option.

2.2.6 VisTrails Basics

In general, a workflow is a way to structure a complex computational process that may involve a variety of different
resources and services. Instead of trying to keep track of multiple programs, scripts, and their dependencies, work-
flows abstract the details of computations and dependencies into a graph consisting of computational modules and
connections between these modules.

The Pipeline button on the VisTrails toolbar accesses VisTrails’ interface for building workflows. Similar to many
existing workflow systems, it allows you to interactively create workflows using an extensible library of modules and
a connection protocol that helps you determine how to connect modules. To add a module to a workflow, simply
drag the module’s name from the list of available modules to the workflow canvas. Each module has a set of input
and output ports, and outputs from one module can be connected to inputs of another module, provided that the types
match. For more information on building workflows in VisTrails, see Chapter Creating and Modifying Workflows.

In addition to VisTrail’s Pipeline interface for manipulating individual workflows, the History interface (accessed
through the History button on the toolbar) contains a number of features that function on a collection of workflows.
A vistrail is a collection of related workflows. As you explore different computational approaches or visualization
techniques, a workflow may evolve in a lot of directions. VisTrails captures all of these changes automatically and
transparently. Thus, you can revisit a previous version of a workflow and modify it without worrying about saving
intermediate versions. This history is displayed by the VisTrails Version Tree, and different ways of interacting with
this tree are discussed in Chapter Interacting with the Version Tree.

12 Chapter 2. An Introduction to VisTrails

VisTrails Documentation, Release 2.0.3

With a collection of workflows, one of the necessary tasks is to search for specific workflows. VisTrail’s search
functionality is accessed by clicking the Query button on the toolbar. The criteria for these searches may vary from
finding workflows modified within a specific time frame to finding workflows that contain a specific module. Because
of the version history that VisTrails captures, these tasks are natural to implement and query. VisTrails has two methods
for querying workflows, a simple text-based query language and a query-by-example canvas that lets you build exactly
the workflow structure you are looking for. Both of these techniques are described in Chapter Querying the Version
Tree.

The Exploration button allows you to explore workflows by running the same workflow with different parameters.
Parameter Exploration provides an intuitive interface for computing workflows with parameters that vary in multiple
dimensions. When coupled with the VisTrails Spreadsheet, parameter exploration allows you to quickly compare
results and discover optimal parameter settings. See Chapter Parameter Exploration for specific information on using
Parameter Exploration.

2.2.7 VisTrails Interaction

Workflow Execution

The Execute button on the toolbar serves as the “play” button for each of the modes described above. In both
the Builder and Version Tree modes, it executes the current workflow. In Query mode, it executes the query, and in
Parameter Exploration mode, it executes the workflow for each of the possible parameter settings.

When a workflow is executed, the module color is determined as follows:

• lilac: module was not executed

• yellow: module is currently being executed

• green: module was successfully executed

• orange: module was cached

• red: module execution failed

Note

VisTrails caches by default, so after a workflow is executed, if none of its parameters change, it won’t be executed
again.
If a workflow reads a file using the basic module File, VisTrails does check whether the file was modified since
the last run. It does so by keeping a signature that is based on the modification time of the file. And if the file
was modified, the File module and all downstream modules (the ones which depend on File) will be executed.
If you do not want VisTrails to cache executions, you can turn off caching: go to Menu Edit→ Preferences and
in the General Configuration tab, change Cache execution results to Never.
If you would like your input and output data to be versioned, you can use the Persistence package.

Additional Interactions

From the Edit menu, Undo and Redo function in the standard way, but note that these actions are implicitly switch-
ing between different versions of a workflow. Thus, you will notice that as you undo or redo a change to a workflow,
the selected version in the version tree changes.

For all modes except Parameter Exploration, the center pane of VisTrails is a canvas where you can manipulate the
current workflow, version tree, or query. The buttons on the right side of the toolbar allow you to change the default
behavior of the primary mouse button (the left button for most multiple button mice) within this canvas. You can
choose the behavior to select items in the scene, pan around the scene, or zoom in and out of the scene by selecting

2.2. Getting Started 13

VisTrails Documentation, Release 2.0.3

the given button. In addition, if you are using a 3-button mouse, the right button will zoom, and the middle button will
pan. To use the zoom functionality, click and drag up to zoom out and drag down to zoom in.

Note

Pressing Ctrl-R will recenter the window.

14 Chapter 2. An Introduction to VisTrails

CHAPTER

THREE

LEARNING VISTRAILS BY EXAMPLE

3.1 Creating and Modifying Workflows

3.1.1 Working with Modules

In VisTrails, modules are represented by a rectangle in the Pipeline view of the Builder. The name of the module
is shown in bold letters in the middle of the rectangle. The input and output ports for the module are denoted by small
squares on the top and bottom of the module, respectively. Modules are connected together to define the dataflow using
curved black lines that go from output to input ports between modules. Each module may have also have adjustable
parameters that can be viewed when a module is selected. Modules can be connected, disconnected, added, and deleted
from a workflow.

As a running example in this chapter, we will make some changes to the “vtk_book_3rd_p189.vt” vistrail, included in
the “examples” folder of the VisTrails installation.

Try it now!

Open the “vtk_book_3rd_p189.vt” vistrail, either by selecting File → Open from the menu, or by clicking
the Open button on the toolbar. After opening this vistrail, select the version labeled final, then click on the
Pipeline toolbar button to enter workflow editing mode.

3.1.2 Adding and Deleting Modules

A list of available modules is displayed hierarchically in the Modules container on the left side of the VisTrails
Builder (Figure The main VisTrails Pipeline...). A core set of basic modules is always distributed with the VisTrails
system. Other packages, such as VTK, are also distributed, but are not necessary for VisTrails and thus can be disabled
on startup (see Chapter Writing VisTrails Packages). Note, however, that the VTK module is required for most of the
examples in this book. Depending on the number of packages imported on startup, the number of modules to select
from can be difficult to navigate. Thus, a simple search box is provided at the top of the container to narrow the
displayed results. To add a module to the workflow, simply drag the text from the Module container to the workflow
canvas.

Modules and connections may be selected in multiple ways and are denoted by a yellow highlight. Besides directly
left clicking on the object, a box selection is available by left clicking and dragging over the modules and connections
in the canvas. Multiple selection can be performed with the box selection as well as by right clicking on multiple
objects with the ‘Shift’ key pressed.

There are several ways to manipulate selected modules in the workflow canvas. Moving them is performed by dragging
a selected module using the left mouse button. Deleting selected modules is performed by pressing the ‘Delete’ key.

15

VisTrails Documentation, Release 2.0.3

Figure 3.1: The main VisTrails Pipeline user interface. The major components are labeled.

The modules and connections can also be copied and pasted using the Edit menu, or with ‘Ctrl-C’ and ‘Ctrl-V’,
respectively.

Try it now!

Let’s replace the vtkQuadric module in our example with a vtkCylinder module instead. To do this, first
type “vtkCylinder” into the search box of the Module container. As the letters are typed, the list filters the
available modules to match the query. Select this module and drag the text onto an empty space in the canvas
(see Figure The vtkCylinder module is added to the canvas). Then, select the vtkQuadric module in the
canvas and press the ‘Delete’ key. This removes the module along with any connections it has (see Figure The
vtkQuadric module is deleted).

Figure 3.2: The vtkCylinder module is added to the canvas.

Figure 3.3: The vtkQuadric module is deleted.

16 Chapter 3. Learning VisTrails By Example

VisTrails Documentation, Release 2.0.3

3.1.3 Connecting Modules

Modules are connected in VisTrails through the input and output ports at the top and bottom of the module, respectively.
By hovering the mouse over the box that defines a port, the name and data type are shown in a small tooltip. To
connect two ports from different modules, start by left clicking inside one port, then dragging the mouse to the other.
The connection line will automatically snap to the ports in a module that have a matching datatype. Since multiple
ports may match, hovering the mouse over the port to confirm the desired match may be necessary. Once a suitable
match is found, releasing the left mouse button will create the connection. Note, a connection will only be made if the
input and output port’s data types match. To disconnect a connection between modules, the line between the modules
can be selected and deleted with the ‘Delete’ key.

Try it now!

To connect the vtkCylinder module to the vtkSampleFunction module, place the cursor over the only
output port on the vtkCylinder module, located on the bottom right. A tooltip should appear that reads
“Output port self (vtkCylinder).” Left click on the port and drag the mouse over the vtkSampleFunction
module. The connection should snap to the fourth input port from the left. Hovering the mouse over this port
shows a tooltip that reads “Input port SetImplicitFunction (vtkImplicitFunction).” Release the mouse button to
complete the connection between these two modules (see Figure The connection replaced). To check for a valid
dataflow, execute the workflow by pressing the Execute button on the toolbar, and see if the results appear in
the spreadsheet.

Figure 3.4: The connection replaced.

3.1.4 Changing Module Parameters

The parameters for a module can be accessed in the Module Information tab located on the right side of the
Builder window. When a module on the canvas is selected, the corresponding module information is displayed. The
Inputs, Outputs, and Annotations tabs can be selected to set parameters within the respective categories. To
set a parameter, simply click on its name to reveal its input box and enter the desired value. Notice that a - and +
button appears to the left of the input box. The - button removes the corresponding input box and the + button adds
one. This allows you to experiment with different values, but only the values in the last box are used in the final result.

Try it now!

To perform a parameter change, select the vtkCylinder module in the canvas. Select SetRadius, enter
0.25 into the text box and press the ‘Enter’ key. By executing the workflow, the modified visualization appears in
the spreadsheet. Figures The module methods... and The results... show the interface and results of the parameter
explorations.

3.1. Creating and Modifying Workflows 17

VisTrails Documentation, Release 2.0.3

Figure 3.5: The module methods interface is shown with a change of the SetRadius parameter to 1.0.

Figure 3.6: The results of the changes are displayed on execution.

Figure 3.7: The module methods interface is shown with a change of the SetRadius parameter to 0.25.

18 Chapter 3. Learning VisTrails By Example

VisTrails Documentation, Release 2.0.3

Figure 3.8: The results of the changes are displayed on execution.

3.1.5 Using Global Variables

VisTrails supports the use of global variables, which allows the user to create a variable which can be used anywhere
within the vistrail. So, if you create a variable of type String, you can assign that variable to any port of type
String. This is done by opening the Vistrail Variables view, creating a variable, and then dragging it to the
desired port.

Try it now!

Open vtk_http.vt and go to the Pipeline view of the Fran Cut Smoothed version. Select Views →
Vistrail Variables. Select the Stringmodule from Basic Modules, drag it over to the Vistrail
Variables tab, and drop it (see Figure Create a Variable...). Name it ‘Filename1’ and assign it the follow-
ing value: ‘http://www.sci.utah.edu/~cscheid/stuff/vtkdata-5.0.2.zip‘. Click on String, which is just below
Filename1 in the Vistrail Variables tab. Drag it over and drop it in the port of the HTTPFile (as
shown in Figure Assign a Variable...). The variable should be assigned and the port should be filled in with
yellow.

To delete a global variable, simply click on the ‘X’ button that appears to the right of its name. This will remove the
variable, but if any ports are assigned to it, they need to be disconnected. You can do this by right-clicking on the port
and selecting Disconnect Vistrail Variables (see Figure Disconnect a Variable...).

Figure 3.9: Create a Variable - Drag the String module and drop it in the Vistrail Variables tab to create a
global variable.

3.1.6 Configuring Module Labels

To give the module a custom name, enter it in the Module Information tab’s Name box. The modules name will
be displayed with the original module name(type) displayed in parenthesis below it.

3.1. Creating and Modifying Workflows 19

http://www.sci.utah.edu/~cscheid/stuff/vtkdata-5.0.2.zip

VisTrails Documentation, Release 2.0.3

Figure 3.10: Assign a Variable - Drag the type from just below the Global Variables name on the Vistrail
Variables tab. Drop it on a port to set the variable.

Figure 3.11: Disconnect a Variable - To disconnect a global variable, right click on the assigned port and select
Disconnect Vistrail Variables.

3.1.7 Configuring Module Ports

For convenience, all the inputs and outputs of a module are not always shown in the canvas as ports. The ports that are
shown by default are defined with the method signatures of a package. A full list of ports is available in the Module
Configuraton window, which is accessed by clicking on the Configure button in the module information tab
or pressing ‘Ctrl-E’ when a module is selected. Alternatively, module ports can be enabled/disabled by clicking in the
left margin next to the port name in the Inputs or Outputs tabs of the Module Information tab (see Figure
Enabling the GetRadius port from the Module Information tab). When enabled, an eye icon will appear to the left of
the port name. New ports will appear on the module with a circle icon instead of a square to signify that they are not
visible by default, but can be connected in the same way as the others.

Try it now!

As an example of configuring a module port, select the vtkCylinder module in the canvas, select Outputs
from the Module Information tab, and click in the left margin next to GetRadius (see Figure Enabling the
GetRadius port from the Module Information tab). A new circle port should appear on the module. Next, add a
new StandardOutput module from the basic modules and connect the output port for GetRadius to the
input port of StandardOutput. Upon execution, the value 0.25 is now output to the console. Figure The
vtkCylinder module... shows the new workflow.

3.1.8 Basic Modules

In addition to the modules provided by external libraries, VisTrails provides a few basic modules for convenience and
to facilitate the coupling of multiple packages in one workflow. These modules mostly consist of basic data types in
Python and some manipulators for them. In addition, file manipulation modules are provided to read files from disk
and write files to disk.

20 Chapter 3. Learning VisTrails By Example

VisTrails Documentation, Release 2.0.3

Figure 3.12: Enabling the GetRadius port from the Module Information tab.

Figure 3.13: The vtkCylinder module is configured to show an additional GetRadius port, which is then con-
nected to a StandardOutput module.

PythonSource

Because not every Python operation can be represented as a module, the PythonSourcemodule is provided to allow
you to write Python statements to be executed as part of a workflow. By pressing ‘Ctrl-E’ when a PythonSource
module is selected in the canvas, a configuration window is opened. This window allows you to specify custom input
and output ports as well as directly enter Python source to be executed in the workflow.

Note

Sometimes is it useful to view the source code that is contained in the PythonSource module when working
with other modules. Since the PythonSource configuration window will disappear when you select a new mod-
ule, a Show read-only window button can be used to open a read-only window of the PythonSource’s
configuration, which will remain open until it is closed.

3.1. Creating and Modifying Workflows 21

VisTrails Documentation, Release 2.0.3

Try it now!

To demonstrate a PythonSource module, we will output the center of the cylinder using Python instead
of the StandardOutput module. First, add a PythonSource module to the canvas and remove the
StandardOutput module. Select the PythonSource module and press ‘Ctrl-E’ to edit the configura-
tion. In the newly opened configuration window, create a new input port named “radius” of type Float. Next,
in the source window enter:

print radius

then select OK to close the window. Finally, connect the GetRadius output of the vtkCylinder module to
the new input port of PythonSource. Upon execution, the radius of the cylinder is printed to the console as
before. Figure A PythonSource module can be used to directly insert scripts into the workflow shows the new
workflow together with the PythonSource configuration window.

Figure 3.14: A PythonSource module can be used to directly insert scripts into the workflow.

Figure 3.15: The configuration window for PythonSource allows multiple input and output ports to be specified
along with the Python code that is to be executed.

Accessing vtkObjects in PythonSource When using a PythonSourcemodule, users will often rely on their knowl-
edge of VTK to interact with VTK modules. It is important to realize that a VTK module is really a wrapping of a
vtkObject. The real vtkObject is called vtkInstance, meaning the vtkObject of a module called ‘dataset’ is called
‘dataset.vtkInstance’ (see figure Accessing vtkObjects...).

22 Chapter 3. Learning VisTrails By Example

VisTrails Documentation, Release 2.0.3

Figure 3.16: Accessing vtkObjects - The vtkObject of a VTK module, ‘dataset’, is accessed with ‘dataset.vtkInstance’.

3.2 Groups and Subworkflows

3.2.1 Grouping Modules

As the number of modules in a pipeline increases, the pipeline can grow quite large and cumbersome. This also
makes the pipeline more difficult to understand and maintain. With any large system, it can be helpful to cluster
related pieces together and represent them as a single unit. This idea, called encapsulation, is commonly used in
computer programming as a way of controlling complexity. VisTrails likewise supports the grouping of multiple
modules together so that they can be treated as a single module. This “group” module can be thought of as a monolithic
entity that performs all the same functions as its individual parts, but shields its inner details from everyone else. As
such, a group module inherits all the input and output ports of the modules inside it, but only displays those ports that
have connections to another module outside of the group. To borrow another term from programming languages, these
visible ports might be considered the public interface of the group module.

Multiple modules are grouped together by first selecting them, and then choosing the Group option from the Edit
menu. Alternatively, you can use the keyboard shortcut ‘Ctrl-G’.

An example may clarify how this works.

Try it now!

Open “vtk_book_3rd_p189.vt”. Select the vtkOutlineFilter, vtkPolyDataMapper, vtkProperty,
and vtkActor modules on the left side of the pipeline, as shown in Figure Box selection of four modules. Type
‘Ctrl-G’ to group these modules. Notice how the pipeline changes, as shown in Figure The modules represented
as a single group module. Since the label “Group” isn’t very descriptive, you can change this by selecting the
Group module, and entering a name in the Name box of the Module Information panel. Type a more
descriptive name, such as “BoundingBox,” into the text field and click OK. The new label is reflected in the
pipeline (Figure Renaming the group).

Just as any number of modules may be clustered into a group, any number of groups may be combined with other
groups or modules to form still larger groups. This is done in the same way as described above.

Further, the contents of the groups or combinations of groups are revealed through the Show Pipeline option.
First select the group module in the pipeline and then select Show Pipeline from the Workflow menu. The
group’s contents will be shown in a new tab. If there is a group within a group, selecting the interior group module
and then selecting Show Pipeline will show the interior group’s pipeline in an additional tab.

3.2. Groups and Subworkflows 23

VisTrails Documentation, Release 2.0.3

Figure 3.17: Box selection of four modules.

Figure 3.18: The modules represented as a single group module.

24 Chapter 3. Learning VisTrails By Example

VisTrails Documentation, Release 2.0.3

Figure 3.19: Renaming the group.

In addition to viewing the group’s contents, any group may be also un-grouped; that is, restored to its individual
modules. This is done by selecting the group module in the pipeline, and then choosing the Edit→ Ungroup menu
option or by pressing ‘Ctrl-Shift-G’. A group’s pipeline may not be used to ungroup interior groups, however. The
tabs opened by the Show Pipeline command are read only.

3.2.2 Subworkflows and Group Modules

A subworkflow is similar to a group, but has some differences. Here, we will explain the differences to make it easier
to understand which one to use when:

• A subworklow is a VisTrail, and a history of changes to a subworkflow is kept, whereas a group is part of a
vistrail. So, if you copy and paste a group, the pasted group won’t necessarily be linked to the group’s history.

• When a subworkflow is created, it is listed in the My Subworkflows portion of the Modules panel. It is
saved and will be accessible from any vistrail. A group, on the other hand can be named and copied and pasted
within a file, or even across files. However, it will not be placed in the modules panel.

• Subworkflows can be edited and saved without needing to ungroup and regroup the modules. To edit anything
within a group, it first needs to be ungrouped, and then regrouped.

3.2.3 Subworkflows

To create a subworkflow, select the modules to include and select Create Subworkflow from the Workflow
menu. See Figure Creating a subworkflow. You will be prompted to name the subworkflow. The subworkflow will
appear in the modules list under My Subworkflows. Groups can be converted to subworkflows by selecting the
Convert to Subworkflow option.

To edit a subworkflow, select a module of the corresponding subworkflow and select Edit Subworkflow from the
Workflow menu. This will open the subworkflow’s file. If you make changes to the subworkflow and save them,
the modules that correspond to the old subworkflow will be marked with a ‘!’, meaning that it is not the latest version.
To upgrade to the latest version, either select the triangle in the module’s upper right corner and choose Upgrade
Module, or delete the old module and replace it with a new one. See Figure Upgrading a subworkflow module that
had been edited.

3.2. Groups and Subworkflows 25

VisTrails Documentation, Release 2.0.3

Figure 3.20: Creating a subworkflow.

Figure 3.21: Upgrading a subworkflow module that has been edited.

26 Chapter 3. Learning VisTrails By Example

VisTrails Documentation, Release 2.0.3

Importing and Exporting Subworkflows

Since subworkflows are saved locally, the Import Subworkflow and Export Subworkflow options can be
used for sharing. For example, to add a subworkflow from an open VisTrail to your local list of My Subworkflows
modules, you would select the subworkflow and select Import Subworkflow from the Workflows menu. Al-
ternatively, you can save any number of subworkflows to a package by dragging the subworkflow modules to the
canvas, selecting them, selecting Export Subworkflow, and following the prompts to name/create the appropri-
ate folders/files. The subworkflows will be exported to a folder which can be added to the userpackages directory.
The package should contain a __init__.py, and an init.py file. The importing of the individual subworkflows will be
handled in the init.py file. See the Writing Vistrails Packages chapter of the Developer’s Guide for more information
on packages.

3.3 Interacting with the Version Tree

3.3.1 Version Tree View

The History button on the VisTrails toolbar lets users interact with a workflow history. It consists of a tree view in
the center and the Properties tool container on the right for querying and managing version properties (see Figure
In History mode, you can examine...). Versions are displayed as ellipses in the tree view where the root of the tree is
displayed at the top of the view. The nodes of the tree correspond to a version of a workflow while an edge between
two nodes indicates that one was derived from the other.

Figure 3.22: In History mode, you can examine and annotate different versions of a workflow.

The nodes are displayed as colored ellipses, and are either blue or orange. A blue color denotes that the corresponding
version was created by the current user while orange nodes were created by other users. The brightness of each node
indicates how recently a version was created; brighter nodes were created more recently than dimmer ones. Each node
may also have a tag that describes the version, and this tag is displayed as a text label in the center of the ellipse of the
corresponding version.

3.3. Interacting with the Version Tree 27

VisTrails Documentation, Release 2.0.3

The nodes are connected by a solid line if the child node is a direct descendent of the parent node; that is, if you have
made only a single change from the older version to the newer version. By default, only nodes that: are leaves, have
more than one child node, are specially tagged (see Section Adding and Deleting Tags), or are current version will be
displayed. To save space, other nodes will be “collapsed,” or hidden from view. Collapsed nodes are marked by the
appearance of a small expansion button along an edge connecting two nodes. Clicking this button expands the version
tree to reveal the hidden versions (Figure To conserve space...). The tree expansion is smoothly animated to help you
maintain context from one view to the next. Clicking the button a second time collapses the nodes once again. Because
most non-trivial changes to a workflow take more than one action, most edges in a the version tree will be shown with
these expansion buttons.

Figure 3.23: To conserve space, linear sequences of non-tagged nodes may be hidden from view. They can be restored
by clicking on the expansion button, which resembles a plus sign (+) inside a small box.

28 Chapter 3. Learning VisTrails By Example

VisTrails Documentation, Release 2.0.3

Try it now!

To see an example of a version tree, load the example vistrail “vtk_book_3rd_p189.vt.” All versions will be
shown in orange unless your username happens to be “emanuele.” Recall that this tree displays the structure of
changes to a workflow, so let’s make some changes to see their effect on the version history. In the History
view, select the node tagged Almost there, and then click on the Pipeline button to switch to a view of
the workflow. Select a connection and delete it. Now, switch back to the History view, and notice that there
is a new child node connected to Almost there. In addition, the line connecting the new node to its parent
is solid, indicating that only a single change has been made. If we delete more connections, an expansion button
would appear (Figures All versions created..., Deleting a connection..., and More interations...).

Figure 3.24: All versions created by other users are shown in orange.

Figure 3.25: Deleting a connection results in a blue version connected by a solid line.

3.3. Interacting with the Version Tree 29

VisTrails Documentation, Release 2.0.3

Figure 3.26: More interactions on this version cause additional versions to be created. To save space, these intermediate
nodes are hidden, and an expansion button appears on the edge between the current node and the last tagged node.

3.3.2 Adding and Deleting Tags

As noted above, only certain nodes, including specially tagged ones, are shown by default in the version tree. To tag a
version, simply click inside a selected node and type some meaningful text. The tag is created when you either click
outside the node or press ‘Enter’. If you would like to change the tag’s text, click inside the node again and modify the
text as before. (Alternately, you can also create and modify tags using the Tag text field in the Properties panel.)

Note that deleting all of the text in the tag field effectively deletes the tag. A second way to delete a tag is to click the
‘X’ button to the right of the text box. Removing a tag from a node may cause it to not be displayed in the default
version tree view if it doesn’t satisfy any of the other criteria for display.

3.3.3 Upgrading Versions

As module packages are continuously updated, with new versions being released periodically, VisTrails is set up to
automatically incorporate module upgrades into existing workflows before they are executed. In other words, VisTrails
upgrades the current vistrail’s current version after the execute button is pressed, but prior to execution. When this
happens, a new version is created in the version tree and tagged ‘Upgrade’. You are then free to rename this version if
desired.

After an upgrade, you will not be able to select the original version because the focus is passed to the upgraded version.
However, if you right-click on the original version and select ‘Display raw pipeline’, this version will keep the focus,
which allows you to see its pipeline by pressing the Pipeline button on the toolbar. See figure Original Pipeline....

Finally, although VisTrails tags the new version with ‘Upgrade’ by default, some users prefer the original version’s
name to be transferred to the upgraded version. VisTrails will do this if you: select Preferences from the
VisTrails menu, select the Expert Configuration tab, and change the migrateTags value to ‘True’.

3.3.4 Adding Version Annotations

In addition to the tag field, the Properties panel displays information about the user who created the selected
version and when that version was created. Also, the Notes field which allows users to store notes or annotations
related to a version. As with tags, adding notes to a version is as easy as selecting the desired version and modifying

30 Chapter 3. Learning VisTrails By Example

VisTrails Documentation, Release 2.0.3

Figure 3.27: Original Pipeline - This figure shows how to view the original pipeline after an upgrade has occurred.

the text field. Notes are automatically saved when you save the vistrail file. Finally, a thumbnail is displayed in the
preview portion of the panel if the version has been successfully executed.

3.3.5 Navigating Versions

Clicking on nodes in the version tree is not the only way to navigate different versions of a workflow; you can also
use Undo (Ctrl-z) and Redo (Ctrl-Shift-z). Because the version tree captures all changes to a workflow, undo and
redo not only revert or reinstate changes to a workflow, but also change the currently selected version in the version
tree. More precisely, undoing a change in a workflow is exactly the same as selecting the parent of the current node in
the version tree. Note that because the current version is always shown in the version tree, undo and redo provide an
effective way to navigate between two nodes whose intermediate versions might be currently hidden from view.

3.3.6 Comparing Versions

While selecting versions in the History view and using the Pipeline view to examine each version is extremely
useful, this approach can be cumbersome when trying to compare two different versions. To help with such a compar-
ison, VisTrails provides a Version Difference mechanism for quickly comparing two versions. This is done by
dragging one version and dropping it onto another, after which a Visual Diff tab will open (see Figure A Visual
Diff showing the difference...).

In the new tab, the difference is displayed in a manner that is very similar to the pipeline view, but modules and
connections are colored based on similarity. Dark gray indicates those modules and connections that are shared
between the two versions; orange and blue show modules and connections that exist in one workflow and not the
other; and light gray modules are those where parameters between the two versions differ. The Legend, which is
displayed in the Diff Properties panel on the right, will remind you of these color correspondences. If the
Diff Properties panel is not visible on the right, you may enable it by selecting Diff Properties under
the View menu. This panel also shows the differences in parameters for light gray colored modules that are selected.

Try it now!

To try out this feature, open the “lung.vt” example vistrail, and click the History button. Within the ver-
sion tree, click and drag the z-space version to the textureMapper version. After the diff appears, se-
lect View → Diff Properties (if the Diff Properties panel is not visible), and then click on the
vtkRenderer module to see the parameter differences. We can see that one of the changes from z-space
to textureMapper was to add a black background. Figure A Visual Diff showing the difference... shows the
result of this comparison.

3.3. Interacting with the Version Tree 31

VisTrails Documentation, Release 2.0.3

Figure 3.28: A Visual Diff showing the difference between version z-space and version textureMapper.

3.4 Merging Two Version Trees

One of the benefits of having a version tree is that branching allows users to work on multiple workflows within the
same file. This is especially useful when workflows are similar or when one workflow provides output for another.
However, if a user creates two different workflows in two different files and decides he/she wants them to be part of
the same file/history, VisTrails allows file merging.

To merge two files:

• Open both files

• Select one of the files you would like to be merged.

• Place you mouse over the Merge With arrow from the Edit menu. A list of open files should appear.

• Select the file that you would like to join with the current (previously selected) file.

The history trees of both files should now be joined and placed in a new file.

3.4.1 Example

3.5 Querying the Version Tree

VisTrails is designed for manipulating collections of workflows, and an integral part of this design is the ability to
quickly search through these collections. VisTrails provides two methods for querying vistrails and workflows. The
first is a Query by Example interface which allows you to build query workflows and search for those with similar
structures and parameters. The second is a textual interface with a straightforward syntax. For each interface, the
results are visual: each matching version is highlighted in the History view, and if the query involves specific
workflow characteristics, any matching entities are also highlighted in the Pipeline view for the current version.

32 Chapter 3. Learning VisTrails By Example

VisTrails Documentation, Release 2.0.3

Figure 3.29: Merging two vistrails.

Figure 3.30: The resultant history tree.

3.5. Querying the Version Tree 33

VisTrails Documentation, Release 2.0.3

3.5.1 Query By Example

One of the problems faced when trying to query a collection of workflows is the fact that structure is important.
Suppose that you want to find only workflows where two modules are used in sequence. Instead of trying to translate
this into a text-based syntax, it is easier to construct this relationship visually. VisTrails provides such an interface
which mirrors the Pipeline view, allowing you to construct a (partial) workflow to serve as the search criteria.

To use the Query by Example interface, click on the Search button on the toolbar. This view is extremely similar to
the Pipeline view and pipelines can be built in a similar manner. Just like the Pipeline view, modules are added
by dragging them from the list on the left side of the window, connections are added by clicking and dragging from a
port on one module to a corresponding port on another module. Setting module parameters in this view will narrow
the search to matching modules whose parameters fall within the specified range of values. Figure Example pipeline
in Search mode shows an example pipeline that has been built in the query builder.

Figure 3.31: Example pipeline in Search mode.

The next step is to decide whether to search the Current Vistrail, Current Workflow, or all Open
Vistrails. The results of the first option are displayed on a version tree as well as in the Workspace panel.
Non-matching versions in the version tree will be grayed out while matching versions will be displayed in the tree as
normal. In contrast, the Workspace panel will display matching results and omit versions with no matches. Double-
clicking a version from the Workspace’s results will bring up the associated pipeline with matching modules
highlighted. See Figures Workspace... and Pipeline....

The remaining two options are Current Workflow and Open Vistrails. The Current Workflow option
is the simplest and will display the pipeline with matching modules highlighted. The Open Vistrails option
will put all of its results in the Workspace panel, listing open vistrails with their matching versions. From here,
double-clicking on a vistrail will bring up a version tree which emphasizes matching versions, or double-clicking on a
version will bring up the associated pipeline with matching modules highlighted.

After constructing a pipeline and selecting the appropriate search option, click the Execute button to begin the query.
This button will be available as long as the query window is not empty. However, you may need to press the Back
to Search button to return to the query window to re-execute.

34 Chapter 3. Learning VisTrails By Example

VisTrails Documentation, Release 2.0.3

Note

You may leave the Query either through use of the toolbar or by pressing the Edit button. However, the search
results will persist until the search is cleared (press Clear Search), returning the workspace to its normal
form.

Try it now!

Let’s practice making a simple query. Open the “offscreen.vt” example vistrail. Click on the Search button
to enter Search mode. Create a query like the one shown in Figure Example pipeline in Search mode by
dragging the modules SheetReference, CellLocation, and RichTextCell onto the Search canvas.
(These modules can be found under the “VisTrails Spreadsheet” header in the Modules panel.) Connect the
input and output ports of the modules as shown, then click the Execute button to perform the query. VisTrails
will automatically switch to the History view, with all matching versions highlighted (Figure History...).
Notice that the query results are also displayed in the Workspace tab. Double-click on the html version in the
workspace to open the results in the pipeline view.

Figure 3.32: Workspace - The query results displayed in the workspace.

Figure 3.33: History - Search results in the History view.

Note that Query by Example provides the capability to iteratively refine searches by adding more criteria. For example,

3.5. Querying the Version Tree 35

VisTrails Documentation, Release 2.0.3

Figure 3.34: Pipeline - The results in the Pipeline view.

if you were interested in workflows that contain a certain module, you may find that such a query returns too many
results. You could then refine the query to find only those workflows where the given module has a parameter setting
that falls within a given range. This is done by specifying parameter values in the Methods panel on the right side of
the window. One major difference between the Pipeline view and the Search view is that you can use comparison
operations, such as ‘<’ and ‘>’, in parameter values. The following example illustrates this.

Try it now!

Open the “terminator.vt” example file, and enter Searchmode. Drag the vtkActormodule from the Modules
panel onto the Search canvas. Execute the query, and see which versions of the workflow contain a vtkActor
module. Select Back to Search to return to the Search view, select the vtkActor module, then select
RotateZ method from the Module Information tab. In the RotateZ text field, select ’>’ and then
enter ‘90’. When you Execute the query this time, you will notice that the results are different. This is
because we are searching for versions that not only contain a vtkActor module, but that also use a value
greater than 90 in this module’s RotateZ method. Your results should resemble those in Figure Query result
showing all workflows....

Figure 3.35: Query result showing all workflows in the “terminator.vt” example that contain the module vtkActor.

36 Chapter 3. Learning VisTrails By Example

VisTrails Documentation, Release 2.0.3

Figure 3.36: The same query refined to show only those workflows whose RotateZ value is greater than 90.

3.5.2 Textual Queries

There are many ways to search for versions in the version tree using textual queries, but they all rely on
a simple text box for input. Begin a search by selecting Search on the toolbar. The search box is
at the top of the center panel and has a magnifying glass icon next to it. If you enter query text, Vis-
Trails will attempt to match logical categories, but if your query is more specific, VisTrails has special
syntax to markup the query. To execute a query, simply press the ‘Enter’ key after typing your query.

Table 3.1: Syntax for querying specific information
using textual queries.

Search Type Syntax
User name user: user name
Annotation notes: phrase
Tag name: version tag
Date before: date | relative time

after: date | relative time

Note

Since we allow regular expressions in our search box, question marks are treated as meta-characters. Thus,
searching for ”?” returns everything and “abc?” will return everything containing “abc”. You need to use “\?”
instead to search for ”?”. So the search for ”??” would be “\?\?”.

Table Syntax for querying specific information using textual queries. lists the different ways to markup a query. Note
that you can search by user name to see which changes a particular user has made, and also by date to see which
changes were made in a specific time frame. When searching by date, you can search for all changes before or after
a given date or an amount of time relative to the present. If searching for changes before or after a specific date,
the date can be entered in a variety of formats. The simplest is ‘day month year,’ but if the year is omitted, the
current year is used. The month may be specified by either its full name or an abbreviation. For example, ’before:
18 November 2004’ and ’after: 20 Dec’ are both valid queries. If searching by relative time, you can
prepend the amount of time relative to the present including the units to ‘ago’. An example of this type of query is
’after: 30 minutes ago’. The available units are seconds, minutes, hours, days, months, or years.

You can concatenate simple search statements to create a compound query to search across different criteria or for
a specific range. For example, to search for workflows whose tag includes ’brain’ and were created by the user
’johnsmith’, the query would be ’name: brain user: johnsmith’. To search for all workflows cre-
ated between April 1 and June 1, the query would be ’after: April 1 before: June 1’.

3.5. Querying the Version Tree 37

VisTrails Documentation, Release 2.0.3

Try it now!

Open the “terminator.vt” example file, and enter Search mode. Let’s look for all workflows that were created
after November 24, 2010. In the search box in the Search panel, type ’after: 24 nov 2010’ and press
‘Enter’. The expected result is shown in Figure Results of a query to find any changes make after November 24,
2010.

Figure 3.37: Results of a query to find any changes made after November 24, 2010.

In addition, VisTrails keeps track of the most recent textual queries, and repeating or clearing these queries can be
accomplished by selecting the recent query from the dropdown menu attached to the search box. Finally, the ‘X’
button next to the search box will reset the query.

Refining the Results

While in the Search view, you can select two different ways of viewing search results. The magnifying glass icon
to the left of the textual search box contains a dropdown menu with two options: “Search” and “Refine” (Figure
Clicking the button to the left...). The first displays results by simply highlighting the matching nodes while the second
condenses the tree to show only the versions that match. For large vistrails, this second method can help you determine
relationships between the matching versions more easily.

Figure 3.38: Clicking the button to the left of the query text box accesses a dropdown menu.

3.6 Spreadsheet

As described in Section Comparing Versions, VisTrails has a powerful built-in mechanism to compare workflows.
However, this comparison shows changes in the design of the workflows, and we are often also interested in differences

38 Chapter 3. Learning VisTrails By Example

VisTrails Documentation, Release 2.0.3

Figure 3.39: The VisTrails Spreadsheet.

in the results of workflows. The VisTrails Spreadsheet provides a simple, flexible, and extensible interface to display
and compare results from workflows. Coupled with the version differences, users can explore the evolution of their
workflows.

The Spreadsheet package is installed with VisTrails by default, and it can display a variety of data ranging from VTK
renderings to webpages without additional configuration. To view the spreadsheet if it is hidden, select Packages
→ Spreadsheet→ Show Spreadsheet.

3.6.1 The Spreadsheet Layout

As should be expected, the VisTrails Spreadsheet consists of one or more sheets, each with a customizable number of
rows and columns.

Custom Layout Options

To modify the layout for the active sheet, you can change both the number of rows and columns and resize individual
cells. The number of rows is controlled by the left spinner in the toolbar and the number of columns by the right
spinner. To resize a given row or column, click and drag on one edge of the row or column header. In addition, you
can resize an individual cell by moving the mouse to lower-right corner of the cell until the cursor changes and clicking
and dragging to the desired size (see Figure Different states of a spreadsheet cell (d)). Note that this will affect the
entire layout, compressing or expanding rows and columns to generate or fill space for the resized cell.

To adjust the default number of rows and columns in the spreadsheet: select preferences from the VisTrails
menu, select spreadsheet from the Enabled Packages portion of the Module Packages tab, press the
Configure button, and adjust the values as for rowCount and colCount as desired.

3.6. Spreadsheet 39

VisTrails Documentation, Release 2.0.3

Multiple Spreadsheets

VisTrails supports the use of multiple spreadsheets which can be added, docked, ordered and deleted. Sheets are added
either by clicking the New Sheet button in the Spreadsheet toolbar or choosing the menu item with the same
name from the Main menu. Each of these sheets can optionally be displayed as a dock widget separated from the main
spreadsheet window by dragging its tab name out of the tab bar at the bottom of the spreadsheet, allowing multiple
spreadsheets to be visible at the same time. To dock a sheet back to the main window, drag it back to the tab bar
or double-click on its title bar. Similarly, sheets are ordered by dragging sheet names to desired locations within the
tab bar. Finally, a sheet can be deleted by clicking the ‘X’ button in the lower-right corner or choosing the Delete
Sheet menu item.

3.6.2 Sending Output to the Spreadsheet

Users may send results to the spreadsheet by using a spreadsheet cell. Upon inspecting the VisTrails Spreadsheet
package (in the list of packages, to the left of the pipeline builder), one can see there are built-in cells for different
kinds of data, e.g., RichTextCell to display HTML and plain text.

By default, an unoccupied cell on the active sheet will be chosen to display the result. However, you can specify in
the pipeline exactly where a spreadsheet cell will be placed by using CellLocation and SheetReference. CellLocation
specifies the location (row and column) of a cell when connecting to a spreadsheet cell (VTKCell, ImageViewerCell,
...). Similarly, a SheetReference module (when connecting to a CellLocation) will specify which sheet the cell will be
put on given its name, minimum row size and minimum column size. There is an example of this in examples/vtk.vt
(select the Cell Location version).

Advanced Cell Options

The user can define new cell types to display application-specific data. For example, we have developed VtkCell,
MplFigureCell, and OpenGLCell. It is possible to display pretty much anything on the Spreadsheet!

Examples of writing cell modules can be found in: RichTextCell: packages/spreadsheet/widgets/richtext/richtext.py
VTK: packages/vtk/vtkcell.py

Here is the summary of some requirements on a cell widget:

1. It must be a Qt widget. It should inherit from spreadsheet_cell.QCellWidget in the spreadsheet package. Al-
though any Qt Widget would work, certain features such as animation will not be available (without rewriting
it).

2. It must re-implement the updateContents() function to take a set of inputs (usually coming from input ports of a
wrapper Module) and display on the cells. VisTrails uses this function to update/reuse cells on the spreadsheet
when new data comes in.

3. It needs a wrapper VisTrails Module (inherited from basic_widgets.SpreadsheetCell of the spreadsheet package).
Inside the compute() method of this module, it may call self.display(CellWidgetType, (inputs)) to trigger the
display event on the spreadsheet.

3.6.3 Interacting with the Spreadsheet

Currently, there are two operating modes in the Spreadsheet: Interactive Mode and Editing Mode. Interactive Mode
allows users to view and interact with the spreadsheet cells, while Editing Mode provides operations for manipulating
cells. The modes can be toggled via the View menu or their corresponding keyboard shortcuts (‘Ctrl-Shift-I’) and
(‘Ctrl-Shift-E’).

40 Chapter 3. Learning VisTrails By Example

VisTrails Documentation, Release 2.0.3

Interactive Mode

In Interactive Mode, users can interact directly with the viewer for an individual cell, interact with multiple cells at
once, or change the layout of the sheet. Because cells can differ in their contents, interacting with a cell changes based
on the type of data displayed. For example, in a cell displaying VTK data (a VTKCell), a user can rotate, pan, and
zoom in or out using the mouse.

In a sheet, a cell can be both active and selected. There can only be one active cell, and that cell is highlighted by a
yellow or grey border. Clicking on any cell will make it active. This active cell will respond to keyboard shortcuts
as well as mouse input. In constrast to the active cell, one or more cells can be selected, and the active cell need
not be selected. To select multiple cells, either click on a row or column heading to toggle selection or ‘Ctrl’-click
to add or remove a cell from the group of selected cells. The backgrounds of selected cells are highlighted using a
platform-dependent selection color. See Figure Different states of a spreadsheet cell... for examples of the different
cell states.

Depending on the cell type, additional controls may appear in the toolbar when a cell is activated. These controls
affect only the active cell, and change for different cell types. As shown by Figure Different states of a spreadsheet
cell (d), a cell optimized for rendering 2D images (a ImageViewerCell) adds controls for resizing, flipping, and
rotating the image in the active cell.

Figure 3.40: Different states of a spreadsheet cell. (a) inactive and unselected, (b) active and unselected, (c) active and
selected, (d) an active cell with its toolbar and resizer.

The Camera

Spreadsheet cells that display VTK data typically are associated with a vtkRenderer, which is associated with a vtk-
Camera. If the camera is not assigned in the workflow, a default one is created. If the rendered geometry is not visible
in the window, pressing ‘r’ will invoke the renderer’s ResetCamera() command, which centers the geometry. Also,
pressing ‘i’ will initiate interactions with interactive vtk objects.

Arranging Cells

As described in Section Custom Layout Options, cells can be resized by either resizing rows, columns, or an individual
cell. In addition to resizing, a row or column can be moved by clicking on its header and dragging it along the header
bar to the desired position. See Section Editing Mode for instructions on moving a specific cell to a different location.

Synchronizing Cells

Often, when a group of cells all display results from similar workflows, it is useful to interact with all of these cells at
the same time. For example, for a group of VTKCells, it is instructive to rotate or zoom in on multiple cells at once

3.6. Spreadsheet 41

VisTrails Documentation, Release 2.0.3

and compare the results. For this reason, if a group of cells is selected, mouse and keyboard events for a single cell of
the selection are propogated to each of the other selected cells. Currently, this feature only works for VTKCells, but
we plan to add this to other cell types as well. An example of this functionality is shown in Figure When selecting all
cells....

Figure 3.41: When selecting all cells, interacting with one VTK cell (A1) causes the other two VTK cells (B1 and B2)
to change their camera to the same position.

Editing Mode

Recall that Editing Mode can be entered either by accessing the View menu or by keying ‘Ctrl-Shift-E’. Editing
Mode provides more operations to layout and organize spreadsheet cells. In this mode, the view for each cell is frozen
and overlaid with additional information and controls (see Figure The spreadsheet in editing mode...). The top of the
overlay displays information about which vistrail, version, and type of execution were used to generate the cell. The
bottom piece of the overlay contains a variety of controls to manipulate the cell depending on the its state.

Cells can be moved or copied to different locations on the spreadsheet by clicking and dragging the appropriate icons
(Move or Copy) for a given cell to its desired location. To move a cell to a location on a different sheet, drag the icon
over the target sheet tab to bring that sheet into focus first and then drop it at the desired location. If you move a cell to
an already-occupied cell, the contents of the two cells will be swapped. See Figure The spreadsheet in editing mode...
for an example of swapping two cells.

Clicking the Locate Version icon will highlight the node in the version tree (in the History view) from which
the visualization in that cell was generated. The next two icons, Create Analogy and Apply Analogy, help
with creating visualizations by analogy. Please refer to Chapter Using Analogies to Update Workflows for information
about this feature.

If a cell was generated via parameter exploration (see Chapter Parameter Exploration), the Create Version button
will be available to save the workflow that generated the result back to the vistrail. Clicking this button modifies the
vistrail from which the cell was generated by adding a new version with the designated parameter settings. Thus, if
you go back to the History mode of the VisTrails Builder for that vistrail, you will find that a new version has been
added to the version tree.

42 Chapter 3. Learning VisTrails By Example

VisTrails Documentation, Release 2.0.3

Figure 3.42: The spreadsheet in Editing Mode. (a) All cell widgets are replaced with an information widget (b) Two
cells are swapped after drag and drop the ‘Move’ icon from A1 to B1.

3.6.4 Launching a Web Browser

It is sometimes difficult to view web pages within a spreadsheet cell due to limited space. It may therefore be desirable
to launch a web browser from within the spreadsheet cell. While this functionality is not provided by VisTrails, here
are some possible solutions:

1. You can use parameter exploration to generate multiple sheets so you might have an exploration that opens each
page in a new sheet. Use the third column/dimension in the exploration interface to have a parameter span
sheets.

2. The spreadsheet is extensible so you can write a custom spreadsheet cell widget that has a button or label with
the desired link (a QLabel with openExternalLinks set to True, for example).

3. You can tweak the existing RichTextCell by adding the line “self.browser.setOpenExternalLinks(True)” at line
63 of the source file “vistrails/packages/spreadsheet/widgets/richtext/richtext.py”. Then, if your workflow cre-
ates a file with html markup text like “VisTrails” connected to a Rich-
TextCell, clicking on the rendered link in the cell will open it in a web browser. You need to add the aforemen-
tioned line to the source to let Qt know that you want the link opened externally; by default, it will just issue an
event that isn’t processed.

3.6.5 Saving a Spreadsheet

Warning: This is currently an experimental feature and as such is not robust. If you rename or move the vistrails
used by the saved spreadsheet, the spreadsheet will not load correctly.

Because spreadsheets can include several workflow executions or parameter explorations, it is helpful to be able to
save the layout of the current spreadsheet. To save a spreadsheet, simply choose the Save menu item from the Main

3.6. Spreadsheet 43

http://www.vistrails.org

VisTrails Documentation, Release 2.0.3

menu, and complete the dialog. After saving a spreadsheet, you can reopen it using the Open menu item. A whole
sheet can also be saved by selecting Export (either from the menu or from the toolbar).

Saving a Spreadsheet Image

To save an image from the spreadsheet, click on the image’s cell to make it active. Then select the camera on the
toolbar to take a snapshot. The system will prompt you for the location and file name where it should be saved. The
other icons can be used for saving multiple images that can be used for generating an animation on demand.

3.7 Using Analogies to Update Workflows

In Chapter Interacting with the Version Tree, we saw how the provenance data maintained by VisTrails allows you
to compare different versions of a workflow. In Chapter Querying the Version Tree, you learned how this same
provenance information forms the basis of an elegant Query by Example mechanism, letting you find all versions of a
workflow that match a given arrangement of modules. In this chapter, we will see yet another benefit of the VisTrails
provenance architecture. Through a process we call visualization by analogy, you can reuse pipeline information to
create new visualizations semi-automatically without directly editing the workflow.

3.7.1 Visualization by Analogy

The main idea behind visualization by analogy is as follows. Given two versions of a workflow (called the “source”
and “target” versions, respectively), VisTrails can automatically find the differences between them and apply those
differences to another (potentially unrelated) workflow. This powerful feature lets you create a new visualization
without having to add or remove modules to/from the pipeline. VisTrails takes care of these details for you behind the
scenes.

There are two distinct user interfaces for constructing visualizations by analogy. In the first, you set up the analogy
in the Visual Diff window. In the second, you interact with the Spreadsheet. Both ways are logically equivalent,
and which method you use will be largely a matter of personal preference.

Before explaining either approach, however, let’s first set up the vistrail that we’ll be using as a running example in
this chapter.

Try it now!

Open the “vtk_http.vt” vistrail, located in the examples directory of the VisTrails distribution. If the tetra
mesh contour version is not selected, go to the History view and select it. This will be our “source”
workflow. Execute this workflow, and take a look at the resultant visualization in the Spreadsheet.
We will now create our “target” workflow. Switch to the Pipeline view and add a new module,
vtkSmoothPolyDataFilter between the vtkContourFilter and vtkDataSetMapper modules.
Your modified pipeline should resemble the one shown in Figure Modified pipeline for use in our example.
Next, let’s adjust some of the parameters for the new module. Select the vtkSmoothPolyDataFilter
module. In the Module Information panel, select SetNumberOfIterations and type 20 in the input
box. Then, select SetRelaxationFactor enter 0.5. Now, execute this workflow, and compare the two
results in the Spreadsheet.
Return to the History view, and give your new version a meaningful tag such as smoothed (Figure Corre-
sponding version tree). Finally, select the Fran Cut version and execute it too. Your spreadsheet should now
resemble the one shown in Figure Analogy example....

44 Chapter 3. Learning VisTrails By Example

VisTrails Documentation, Release 2.0.3

Figure 3.43: Modified pipeline for use in our example.

Figure 3.44: Corresponding version tree.

3.7. Using Analogies to Update Workflows 45

VisTrails Documentation, Release 2.0.3

Figure 3.45: Analogy example - (top left) Original tetrahedral mesh model. (top right) Smoothed tetrahedral mesh.
(bottom left) “Fran Cut” model.

3.7.2 Using the Visual Diff Window

By creating an analogy, you’re telling VisTrails to analyze and store the differences between the “source” and “target”
versions of a workflow. Then when you apply that analogy to another (perhaps completely different) version of the
workflow, VisTrails attempts to make similar types of changes to this other workflow.

One way to create an analogy is to run a Visual Diff between the “source” and “target” workflows. Recall from
Chapter Interacting with the Version Tree that to perform a Visual Diff between two versions of a workflow, you
need to drag the icon for one version atop the icon for the other. However, in the case of analogies, the sequence is
important. In order for the analogy to work correctly, the icon for the source version of the workflow must be dragged
atop the icon for the target version (not vice versa).

In the toolbar of the Diff Properties window, there is a button whose tooltip is labeled Create Analogy
(Figure Click the Create Analogy button...). Clicking the Create Analogy will open up a dialog that lets you give
this analogy a descriptive name. Once the analogy has a name, you can then apply it to any version of the workflow.
This is done by returning to the History view, and selecting then right-clicking the version you want to apply the
analogy to. A menu will appear, showing you a list of available analogies. Choose the one you want, and VisTrails
will attempt to apply the selected analogy to this version of the workflow.

46 Chapter 3. Learning VisTrails By Example

VisTrails Documentation, Release 2.0.3

Figure 3.46: Click the Create Analogy button in the Diff Properties window to create a named analogy.

Try it now!

In the History view, drag the tetra mesh contour icon (the “source” version) atop the smoothed
icon (the “target” version). A Visual Diff window will open. Click the Create Analogy button in
the toolbar and then choose a name for this analogy, for example “SmoothFilter.” Close the Visual Diff
window. Select the Fran Cut icon in the History view so that it is highlighted, then right-click to access
the Perform analogy menu. Choose the name of the analogy you just made (Figure Access the Perform
analogy menu by right-clicking...). A new version icon will appear as a child of the current icon. Select the new
icon, and click Execute to run this new version of the workflow. The resulting visualization will appear in the
Spreadsheet (Figure Result of applying a smoothing analogy to a different workflow).

Figure 3.47: Access the Perform analogy menu by right-clicking on a selected icon in the version tree.

3.7.3 Using the Spreadsheet

You can also create and apply analogies directly in the Spreadsheet, without the use of the Visual Diff window.
The Spreadsheet uses a simple “drag and drop” interface to manipulate analogies, and many users find it simpler to

3.7. Using Analogies to Update Workflows 47

VisTrails Documentation, Release 2.0.3

Figure 3.48: Result of applying a smoothing analogy to a different workflow.

work with than the method described above. The drawback is that the Spreadsheet does not allow you to name your
analogies like the Visual Diff window does.

The Spreadsheet must be in Editing Mode in order to use analogies. Please refer to Chapter Spreadsheet for more
information about the Spreadsheet’s modes. Identify the two cells representing the “source” and “target” visualizations
for which you wish to create an analogy. Drag the Create Analogy icon from the “source” to the “target.” This
creates an analogy that you can use to apply changes to other workflows. To apply an analogy to another version, drag
the Apply Analogy icon from the cell containing a visualization to which you want to apply the analogy, to an
empty cell. A new version of the workflow will be created, and rendered in the designated cell.

The following example illustrates how to use analogies within the Spreadsheet. If you completed the previous “Try it
now!” exercise, first clear the cell containing the smoothed version of the Fran Cut model, so that it won’t interfere
with the present example. The Spreadsheet should again resemble Figure Analogy example....

Try it now!

Switch to the Spreadsheet’s Editing Mode by hitting ‘Ctrl-Shift-E.’ Create the analogy by dragging the Create
Analogy icon from the top-left cell over to the top-right cell (Figure Drag the Create Analogy icon from the
source cell...). Next, apply this analogy to the Fran Cut model by dragging the Apply Analogy icon from
the bottom-left cell over to the bottom-right cell (Figure Drag the Apply Analogy icon from the cell you wish to
modify...). Hit ‘Ctrl-Shift-I’ to return to Interactive Mode, and see the result of your analogy. It should resemble
the output of the first example, as shown in Figure Result of applying a smoothing analogy....

Regardless of whether you use the Visual Diff interface or the Spreadsheet interface to create your analogy, the
end result is the same. To verify this, you can inspect the Pipeline view for the newly created version of the
workflow. All the module(s) necessary to implement the analogy’s behavior are automatically inserted by VisTrails at
the correct locations in the pipeline.

48 Chapter 3. Learning VisTrails By Example

VisTrails Documentation, Release 2.0.3

Figure 3.49: Drag the Create Analogy icon from the “source” cell to the “target” cell to create an analogy.

Figure 3.50: Drag the Apply Analogy icon from the cell you wish to modify to an empty cell.

3.7. Using Analogies to Update Workflows 49

VisTrails Documentation, Release 2.0.3

3.7.4 Notes

Creating visualizations by analogy is a relatively new feature of VisTrails, and as such is not yet fully mature. Although
it works well for the examples presented herein, our algorithm may fail to create intuitive visualizations on other
pipelines. Furthermore, it is not yet possible to save an analogy, nor apply an analogy to a vistrail other than the one
in which it was created. Please contact the VisTrails development team with any bug reports and/or suggestions.

3.8 Parameter Exploration

While exploring workflows, one critical task is tweaking parameter values to improve simulations or visualizations.
VisTrails contains an integrated parameter exploration interface that lets you thoroughly explore the parameter space
and quickly identify the desired settings. By binding parameters to a range of values, you can generate a collection of
results without having to tediously edit the workflow.

VisTrails Parameter Exploration is Spreadsheet-aware, so you can map the intermediate results from explorations into
cells of the Spreadsheet. Because the Spreadsheet provides a multi-view interface that makes efficient use of screen
space, you can quickly compare the results of different parameter settings. The changes in parameters can be displayed
across rows, columns, and sheets. In addition, parameters can be explored across timesteps, and then displayed in the
Spreadsheet as animations. This could be used, for example, to show how pathological tissues and tumors are affected
by radiation treatment in a series of scans.

3.8.1 Creating a Parameter Exploration

To access VisTrails Parameter Exploration for the currently-active workflow, click on the Exploration button in
the VisTrails toolbar.

The Parameter Exploration view starts out with a blank central canvas wherein exploration parameters can be
set up. On the right side of the window, there are a variety of panels that control aspects of the exploration.

The Set Methods panel contains the list of parameters that can be explored, the Annotated Pipeline panel
displays the workflow to be explored and helps resolve ambiguities for parameter settings, and the Spreadsheet
Virtual Cell aids users in laying out exploration results in the spreadsheet.

To add parameters to an exploration, simply drag the corresponding method from the Set Methods panel to the
center canvas. To reduce clutter, this panel only shows the methods for which parameters were assigned values in the
Pipeline view. See Chapter Creating and Modifying Workflows for instructions on adding methods and parameters
to a module.

After dragging a method to the exploration canvas, you can, for each parameter, set the collection of values to be ex-
plored and the direction in which to explore (Figure Setting values for parameter exploration). By default, intermediate
parameter values are set via linear interpolation. We will discuss other options later.

Figure 3.51: Setting values for parameter exploration.

The five column headings in the upper-right corner of the main canvas control how the results of the parameter explo-
ration will be displayed in the Spreadsheet. From left to right, the five controls determine:

50 Chapter 3. Learning VisTrails By Example

VisTrails Documentation, Release 2.0.3

exploration in the ‘x’ direction

exploration in the ‘y’ direction

exploration in the ‘z’ direction

exploration in time

none; do not vary this parameter

The spinner beneath each of these icons lets you control the number of parameter values to be explored in that direction.
For each parameter, you must select one of the radio buttons corresponding to a direction of exploration (‘x’, ‘y’, ‘z’,
time, or none). Note that choosing the final column disables exploration for that parameter.

To run a parameter exploration, click the Execute button in the VisTrails toolbar or select Execute Parameter
Exploration from Run menu.

We now reinforce the above discussion with three examples, motivated by the problem of finding isosurfaces for
medical imaging. In the examples that follow, we’ll look at determining the interfaces between different types of
tissue captured by CT scans.

Try it now!

To begin, load the “terminator.vt” vistrail, select the “Isosurface” node in the version tree, and switch to
parameter exploration. From the Set Methods panel, click and drag the SetValue method of the
vtkContourFilter module to the center canvas.
We’d like to compare different values for the isosurfaces so change the start and end values of the “Float”
parameter to “30” and “75”. Since side-by-side visualization will look better on most monitors, select the radio
button below the ‘x’ dimension control, and increase the value of the control to 2 (see Figure Setting values for
parameter exploration). Execute the exploration and switch to the Spreadsheet to view the results. They should
match Figure Parameter Exploration of two isovalues....

Next Step!

While these two isovalues show interesting features, we may wish to examine other intermediate isosurfaces.
To do so, switch back to the main VisTrails window and increase the number of results to generate in the ‘x’
direction to four. VisTrails will calculate the intermediate values via linear interpolation, and your execution of
this new exploration should match Figure Parameter Exploration of four isovalues....

In our next example, we demonstrate how multiple parameter values can be explored simultaneously. We will use both
X and Y exploration directions to change the values of two parameters at the same time in the same spreadsheet.

3.8. Parameter Exploration 51

VisTrails Documentation, Release 2.0.3

Figure 3.52: Parameter Exploration of two isovalues as displayed in the Spreadsheet.

Figure 3.53: Parameter Exploration of four isovalues as displayed in the Spreadsheet.

52 Chapter 3. Learning VisTrails By Example

VisTrails Documentation, Release 2.0.3

Try it now!

In the “terminator.vt” example vistrail, make sure you’re working with the “Isosurface” version of the work-
flow, then go to the Pipeline view. Add the module vtkImageResample to the pipeline, and insert it
between vtkStructuredPointsReader and vtkContourFilter, connecting the output of the reader
to input of the resampler and the output of the resampler to the input of the contour filter as shown in Fig-
ure Inserting a vtkImageResample module.... Finally, select the vtkImageResample module and set the
SetAxisMagnificationFactor to 0 and 0.2. See Chapter Creating and Modifying Workflows for re-
minders on how to accomplish these tasks. After modifying the workflow, switch back to the Exploration
view. Inside the Set Methods panel, select the SetValue method from the vtkContourFilter mod-
ule, and drag it to the center canvas. Also select the SetAxisMagnificationFactor method from the
vtkImageResample module and drag it to the canvas. Set the values as in the previous example, and set
the range of the “Float” parameter of “SetAxisMagnificationFactor” to start at 0.2 and end at 1.0. Also, set the
magnification factor to vary over the ‘y’ direction. Finally, set the exploration to generate 16 results, four in the
‘x’ direction, and four in the ‘y’ direction. Your exploration setup should match Figure Setting up parameter
exploration, and after executing, you should see a result that resembles Figure Resulting spreadsheet. Notice
that the isosurface changes from left to right while the images have less artifacts as the magnification factor
approaches 1.0 from top to bottom.

Figure 3.54: Inserting a vtkImageResample module into the “terminator.vt” example pipeline.

Figure 3.55: Setting up parameter exploration.

Our third example shows how to create an animation by exploring parameter values in time, rather than in ‘X’ or ‘Y’.

3.8. Parameter Exploration 53

VisTrails Documentation, Release 2.0.3

Figure 3.56: Resulting spreadsheet.
Using parameter exploration with two parameters.

Try it now!

To create an animation, we’ll use the same “terminator.vt” example (make sure that you have the “Isosurface”
version selected). Follow the same steps as in the first example, but this time, use the range from 30 to 80 and
select “time” as the dimension to explore, setting the number of results to generate to 7. See Figure Setting up
parameter exploration to check your settings. After executing, the Spreadsheet will show a single cell, but if
you select that cell, you will be able to click the Play button in the toolbar. You should see an animation where
each frame is the result of choosing a different isovalue. A sample frame is displayed in Figure One frame from
the resulting animation.

Figure 3.57: Setting up parameter exploration.

3.8.2 Alternatives to Linear Interpolation

In each of the examples above, we used linear interpolation to vary the parameter values in ‘X’ and ‘Y’ and time.
However, linear interpolation is only one of three methods for exploring a range of parameter values. The other two
are to iterate through a simple list of values, or use a user-defined function. You can choose the desired method from
the drop-down menu on the right side of the parameter input field (Figure Choose from linear interpolation, list, or
user-defined function). For linear interpolation, the starting and ending values must be specified; for a list, the entire
comma-separated list must be specified, and for a user-defined function, a Python function must be specified. For the
list and user-defined functions, you can access an editor via the ‘...’ button. (See Figure Editors for lists of values for

54 Chapter 3. Learning VisTrails By Example

VisTrails Documentation, Release 2.0.3

Figure 3.58: One frame from the resulting animation.

examples of the list editor and Python editor widgets.) As an alternative to the list editor, you can manually enter a
list using Python notation; for example, [30, 36, 45, 75]. As before, to set the direction in which to explore a
given parameter, simply select the radio button in the column for the specified direction.

Figure 3.59: Choose from linear interpolation, list, or user-defined function.

In both the Set Methods and Annotated Pipeline panels, you may see numbered red circles. See Figure
The panels of the Parameter Exploration window... for an example of what this looks like. These circles appear when
there is more than one module of a given type in a workflow. For each type satisfying this criteria, the instances are
numbered and displayed so that you can identify which part of the pipeline a module in the Set Methods panel
corresponds to.

3.8.3 “Virtual Cell” Layout

As stated earlier, the Spreadsheet provides integrated support for parameter explorations. Each of the directions of
exploration corresponds to a visual dimension in the spreadsheet: the ‘x’ direction corresponds to columns; the ‘y’
direction to rows; the ‘z’ direction to sheets; and time to animations. However, when a workflow already outputs to
more than one cell, you can layout the group of cells as it will be replicated during the exploration. For example,
given a workflow with two output cells and an exploration for three parameter values in the ‘x’ direction, the resulting
spreadsheet could be 1× 6 or 2× 3. The Spreadsheet Virtual Cell panel controls the layout of the pattern.

3.8. Parameter Exploration 55

VisTrails Documentation, Release 2.0.3

Figure 3.60: Editors for lists of values.

Figure 3.61: Editors for user-defined functions.

56 Chapter 3. Learning VisTrails By Example

VisTrails Documentation, Release 2.0.3

Figure 3.62: The panels of the Parameter Exploration window. Set Methods (Top) will appear in the right panel
and the others will be on the left. The numbered red circles in the Annotated Pipeline (Middle) distinguish
duplicate modules, and the cells in the Spreadsheet Virtual Cell (Bottom) determine the layout for spread-
sheet results.

Drag and drop cells to position them. See Figures The panels of the Parameter Exploration window (Bottom) and
Results of the Virtual Cell arrangement for an example.

Figure 3.63: Results of the Virtual Cell arrangement.

3.9 Provenance Browser

The Provenance Browser allows you to browse through all executions performed on a vistrail. When the
Provenance mode is selected, executions are displayed in the Log Details panel on the right (see figure Prove-
nance Browser). Selecting an execution from the Log Details panel will display the pipeline with modules colored
according to their execution results. Alternatively, this pipeline is displayed by double-clicking on the execution in the
Workspace panel. Executions in the Workspace panel are displayed under the version to which they belong and
are made visible or invisible by toggling the panel’s executions button. Notice that only executions that belong to
tagged versions are displayed in the Workspace, but all executions are displayed in the Log Details.

3.9. Provenance Browser 57

VisTrails Documentation, Release 2.0.3

Figure 3.64: Provenance Browser - Left: The Workspace has a button to enable/disable executions. When enabled,
executions of each tagged version in the vistrail will appear when each respective version is expanded. Right: The
Provenance Browser keeps track of all executions whether they belong to tagged versions or not. When selected,
the color coded execution pipeline will appear in the center panel.

58 Chapter 3. Learning VisTrails By Example

VisTrails Documentation, Release 2.0.3

3.10 Mashups

3.10.1 Creating Parameter Aliases

If you would like to be able to explore different values for a specific parameter, you will need to create an alias by
double-clicking the parameter in the Parameter Aliases section. After naming the alias, you can select the
alias in the Mashup tab (center panel), and configure the alias by selecting the Display Widget type and setting
Default values.

Notice that a pipeline can have multiple modules of the same type or name, making it difficult to differentiate be-
tween them. These modules are each assigned a number, with the numbers in the Annotated Pipeline section
corresponding to the numbers in the Parameter Aliases section, making it possible set an alias for the desired
module without much confusion. See figure Numbered Modules....

Finally, not all modules in the Annotated Pipeline will show up in the Parameter Aliases section. Only
modules whose parameters have been set in the pipeline will appear.

3.10.2 Configuring Parameter Aliases

As mentioned in section Creating Parameter Aliases, aliases are configured in the center panel (the Mashup tab).
This is pretty simple, so here are the steps:

1. Select the alias you wish to configure from the top box in the Aliases tab. The name and position of the
selected alias should be displayed below. Both of these can be changed by editing the Name and/or Order
values.

2. Next select the type of widget to display. The choices are combobox, slider, and numeric stepper. The combobox
will allow you to enter specific values, whereas the numeric stepper and slider will allow you to scroll through
a range of values.

3. Set the Min Val, Max Val, and Step Size (for slider and numeric stepper only).

4. Set the Default Value. The default value should already be set based on the value it was given in the pipeline,
but you are allowed to change it here if desired.

5. Enter suggested values. If you have a set of values to suggest to the user through the Mashups interface, you
should add them to the values list. You can do this by either clicking the ... button and adding the appropriate
values, or by entering the values in the Values List box in list format.

6. Finally, you may delete an alias with the Delete Alias button.

After configuring the necessary aliases, press Preview to interact with your mashup and to ensure its proper func-
tionality.

3.10.3 Saving a Mashup

Mashups are added the the VisTrail when you press the keep button. However, this changes the VisTrail, but does not
save it. To fully save your mashup, you should both press the Keep button and save the VisTrail.

3.10.4 Managing Multiple Mashups

The Mashups Inspector allows you to both rename a mashup, and easily switch between existing mashups.

3.10. Mashups 59

VisTrails Documentation, Release 2.0.3

Figure 3.65: Numbered Modules - The HTTPFile modules 1 and 2 appear in the annotated pipeline and in the param-
eter aliases. The annotated pipeline also, numbers the vtkDataSetReader modules (which appear below the respective
HTTPFile modules in the pipeline). Their parameters have not been exposed to the mashup, so they do not appear in
the Parameter Aliases section.

60 Chapter 3. Learning VisTrails By Example

VisTrails Documentation, Release 2.0.3

3.10.5 A Simple Example

Try it now!

• Open “brain_vistrail.vt”
• Choose Save As and rename the file if you do not want to overwrite the original.
• Select the “counter 4” version
• Press execute to ensure any necessary upgrades are made
• Select Mashup from the toolbar.
• In the Mashup Pipeline tab, look under vtkProperty→ SetOpacity and double-click on Float.
• Enter “Opacity” in the Set Parameter box that pops up, then click OK. See figure Creating the Opacity

Alias.
• Under vtkRenderer→ SetBackgroundWidget, double-click on Color and enter “Background”

as the alias. See figure Creating the Background Alias.
• In the center panel, select the Opacity alias.
• Change the display widget to numericstepper.
• Set the Min Val, Max Val, and Step Size to 0, 1, and 0.1 respectively.
• Set the Values List to [0.3, 0.5]. See figure Configuring the Opacity Alias.
• Select the Background alias and make sure the display widget is a combobox.
• Select Preview. See figure The resulting mashup.
• Select Keep, No, and then enter “one” as the new tag name.
• Save the file.

Figure 3.66: Creating the Opacity Alias.

3.11 Module Descriptions and Examples

3.11.1 VisTrails VTK modules

Although most VTK modules in VisTrails would be familiar to vtk users, or at least in the vtk documentation, there
are a few modules that VisTrails introduces. They are used as follows:

• PythonSource - Although a PythonSource is in the Basic Modules list rather than VTK, it is mentioned here
for convenience. This module allows you write python statements to be executed as part of the workflow. See
Section PythonSource for more information.

• VTKCell - VTKCell is a VisTrails module that can display a vtkRenderWindow inside a cell. Simply pass it a
vtkRenderer and any additional optional inputs, and it will display the results in the spreadsheet.

3.11. Module Descriptions and Examples 61

VisTrails Documentation, Release 2.0.3

Figure 3.67: Creating the Background Alias.

Figure 3.68: Configuring the Opacity alias.

62 Chapter 3. Learning VisTrails By Example

VisTrails Documentation, Release 2.0.3

Figure 3.69: The resulting mashup.

3.11. Module Descriptions and Examples 63

VisTrails Documentation, Release 2.0.3

• VTKRenderOffscreen - Takes the output of a vtkRenderer and produces a PNG image of size width X height.
Default values of width and height are 512. The output can then be written to a file using a FileSink.

• VTKViewCell - This is similar to the VTKCell except that you pass it a vtkRenderView.

• vtkInspectors: vtkDataArrayInspector, vtkDataSetAttributesInspector, vtkDataSetInspector, vtkPoly-
DataInspector - These inspectors were created to allow easy access to information that is not otherwise exposed
by module ports, but would be accessible through vtk objects. This information includes: normals, scalars, ten-
sors, and vectors as well as statistical information such as bounds, center, length, max, min. Looking at the
output ports of these inspectors gives an idea of the information available.

• vtkInteractionHandler - The vtkInteractionHandler is used when a callback function is needed. To setup this
handler:

– Connect the Observer input port to the output port of the object that needs the callback function.

– Connect the SharedData input port to the modules that would be passed as parameters to the
callback function. Multiple modules can be connected (see terminator.vt - Images Slices SW).

– Connect the output port to the VTKCell.

– Select configure to write the callback function.

* Name the function after the event that initiates it, but replace ‘Event’ with ‘Handler’. If
the function should be called when a StartInteractionEvent occurs, the function
should be named startInteractionHandler.

* The function should take the parameters observer, and shareddata.

* Add the contents of the function.

There are a number of examples that use the vtkInteractionHandler. If there is any confusion, com-
paring the callback/interaction handler portions of the .py and .vt files in the vtk_examples/GUI
directory is helpful.

Accessing vtkObjects in vtkInteractionHandler VtkObjects passed to the vtkInteractionHandler
are VisTrails modules. The vtkObject within that module is called a vtkInstance and is accessed by
calling myModule.vtkInstance. See Section PythonSource for more information.

• vtkScaledTransferFunction - Allows you to add a transfer function through the use of an interactive widget.
See head.vt - volume rendering or terminator.vt for example usage.

3.11.2 Modules and Corresponding Examples

Here we provide a list of the .vt files in the examples directory that use the following modules:

• AreaFilter: triangle_area.vt

• CellLocation: offscreen.vt, terminator.vt, vtk.vt

• ConcatenateString: KEGG_SearchEntities_webservice.vt

• Cross: triangle_area.vt

• fetchData: structure_or_id_webservice.vt, protein_visualization.vt

• FileSink: offscreen.vt - offscreen

• Filter: triangle_area.vt

• If: structure_or_id_webservice.vt, protein_visualization.vt

• ImageViewerCell: r_stats.vt

• List: triangle_area.vt

64 Chapter 3. Learning VisTrails By Example

VisTrails Documentation, Release 2.0.3

• Map: triangle_area.vt

• MplFigure: plot.vt, terminator.vt - Histrogram, triangle_area.vt, vtk.vt - Three Cells

• MplFigureCell: plot.vt, terminator.vt - Histrogram, triangle_area.vt, vtk.vt - Three Cells

• MplPlot: plot.vt, terminator.vt - Histrogram, triangle_area.vt, vtk.vt - Three Cells

• PythonCalc: ProbeWithPointWidget.vt, officeTube.vt

• PythonSource: infovis.vt, noaa_webservices.vt, offscreen.vt, KEGG_SearchEntities_webservice.vt,
chebi_webservice.vt, EMBOSS_webservices.vt, structure_or_id_webservice.vt, vtk_http.vt, pro-
tein_visualization.vt, terminator.vt, triangle_area.vt

• RichTextCell: noaa_webservices.vt, offscreen.vt, KEGG_SearchEntities_webservice.vt, chebi_webservice.vt,
EMBOSS_webservices.vt, protein_visualization.vt

• RPNGFigure: r_stats.vt

• RReadCSV: r_stats.vt

• Rsource: r_stats.vt

• SheetReference: offscreen.vt, vtk.vt

• StandardOutput: r_stats.vt, triangle_area.vt

• Tuple: marching.vt, ProbingWithPlaneWidget.vt, TransformWithBoxWidget.vt, BandContourTerrain.vt,
probeComb.vt, ImplicitPlaneWidget.vt, BuildUGrid.vt, ProbeWithPointWidget.vt, VolumeRenderWith-
BoxWidget.vt, PerlinTerrain.vt

• Untuple: probeComb.vt, BandContourTerrain.vt

• vtk3DSImporter: flamingo.vt

• vtkAppendPolyData: vtk.vt - Implicit Plane Clipper, xyPlot.vt, TransformWithBoxWidget.vt, probeComb.vt,
ImplicitPlaneWidget.vt, warpComb.vt

• vtkAssembly: assembly.vt

• vtkAxes: textOrigin.vt

• vtkBandedPolyDataContourFilter: BandContourTerrain.vt

• vtkBMPReader: Tplane.vt, imageWarp.vt, GenerateTextureCoords.vt

• vtkBoxWidget: TransformWithBoxWidget.vt, VolumeRenderWithBoxWidget.vt, cone.vt - 6

• vtkBYUReader: cubeAxes.vt, ClipCow.vt

• vtkCastToConcrete: ExtractUGrid.vt

• vtkCellArray: constrainedDelaunay.vt, Arrays.vt, CreateStrip.vt

• vtkClipPolyData: terminator.vt, vtk.vt - Implicit Plane Clipper, ImplicitPlaneWidget.vt, ClipCow.vt

• vtkColorTransferFunction: lung.vt, SimpleRayCast.vt, mummy.xml - volume rendering, SimpleTex-
tureMap2D.vt, VolumeRenderWithBoxWidget.vt

• vtkCone: iceCream.vt

• vtkConeSource: vtk_book_3rd_p193.vt, vtk.vt - Implicit Plane Clipper, TransformWithBoxWidget.vt,
Cone.vt, ImplicitPlaneWidget.vt, ProbeWithPointWidget.vt, assembly.vt

• vtkConnectivityFilter: ExtractUGrid.vt, pointToCellData.vt

3.11. Module Descriptions and Examples 65

VisTrails Documentation, Release 2.0.3

• vtkContourFilter: brain_vistrail.vt, spx.vt, vtk_http.vt, marching.vt, head.vt - alias, mummy.xml - Isosurface,
terminator.vt, pointToCellData.vt, triangle_area.vt - CalculateArea, Medical1.vt, hello.vt, VisQuad.vt,
probeComb.vt, vtk_book_3rd_p189.vt, Medical2.vt, iceCream.vt, Contours2D.vt, Medical3.vt, PerlinTer-
rain.vt, ColorIsosurface.vt, PseudoVolumeRendering.vt

• vtkCubeAxesActor2D: cubeAxes.vt

• vtkCubeSource: assembly.vt, marching.vt

• vtkCutter: ClipCow.vt, CutCombustor.vt, PseudoVolumeRendering.vt

• vtkCylinderSource: assembly.vt, cylinder.vt

• vtkDataArrayInspector: CutCombuster.vt, officeTube.vt

• vtkDataSetAttributesInspector: officeTube.vt, CutCombustor.vt

• vtkDataSetInspector: ProbingWithPlaneWidget.vt, StreamlinesWithLineWidget.vt, CutCombustor.vt, office-
Tube.vt, TextureThreshold.vt, BandContourTerrain.vt, probeComb.vt, ProbeWithPointWidget.vt, rain-
bow.vt, streamSurface.vt, warpComb.vt

• vtkDataSetMapper: offscreen.vt, spx.vt, structure_or_id_webservice.vt, vtk_http.vt, SubsampleGrid.vt, Tex-
tureThreshold.vt, imageWarp.vt, protein_visualization.vt, head.vt - alias, mummy.xml - Isosurface, ter-
minator.vt - Histogram, pointToCellData.vt, ExtractUGrid.vt, ExtractGeometry.vt, vtk.vt, BuildUGrid.vt,
GenerateTextureCoords.vt

• vtkDataSetReader: brain_vistrail.vt, vtk_http.vt, triangle_area.vt, ExtractUGrid.vt, vtk.vt

• vtkDecimatePro: smoothFran.vt

• vtkDelaunay2D: constrainedDelaunay.vt, faultLines.vt

• vtkDelaunay3D: GenerateTextureCoords.vt

• vtkDEMReader: BandContourTerrain.vt

• vtkDoubleArray: Arrays.vt

• vtkExtractEdges: constrainedDelaunay.vt, marching.vt

• vtkExtractGeometry: ExtractGeometry.vt

• vtkExtractGrid: SubsampleGrid.vt, PseudoVolumeRendering.vt - vtkPlane

• vtkExtractUnstructuredGrid: ExtractUGrid.vt

• vtkExtractVOI: Contours2D.vt

• vtkFloatArray: Arrays.vt, BuildUGrid.vt, marching.vt

• vtkFollower: textOrigin.vt

• vtkGeometryFilter: ExtractUGrid.vt, pointToCellData.vt

• vtkGlyph3D: vtk_book_3rd_p193.vt, marching.vt, vtk.vt - Implicit Plane Clipper, TransformWithBoxWid-
get.vt, ImplicitPlaneWidget.vt, ProbeWithPointWidget.vt, spikeF.vt

• vtkGraphLayoutView: infovis.vt

• vtkHexahedron: BuildUGrid.vt

• vtkIcicleView: infovis.vt

• vtkIdList: BuildUGrid.vt, marching.vt

• vtkImageActor: Medical3.vt

• vtkImageDataGeometryFilter: BandContourTerrain.vt, imageWarp.vt

66 Chapter 3. Learning VisTrails By Example

VisTrails Documentation, Release 2.0.3

• vtkImageLuminance: imageWarp.vt

• vtkImageMapToColors: brain_vistrail.vt, Medical3.vt

• vtkImageReslice: terminator.vt

• vtkImageShiftScale: lung.vt - raycasted

• vtkImageShrink3D: BandContourTerrain.vt

• vtkImplicitBoolean: iceCream.vt, ExtractGeometry.vt

• vtkImplicitModeller: hello.vt

• vtkImplicitPlaneWidget: terminator.vt, vtk.vt, ImplicitPlaneWidget.vt

• vtkImplicitSum: PerlinTerrain.vt

• vtkIntArray: Arrays.vt

• vtkInteractionHandler: ProbingWithPlaneWidget.vt, StreamlinesWithLineWidget.vt, terminator.vt, vtk.vt -
Implicit Plane Clipper, TransformWithBoxWidget.vt, Cone.vt - 6 , ImplicitPlaneWidget.vt, ProbeWith-
PointWidget.vt, VolumeRenderWithBoxWidget.vt

• vtkInteractorStyleImage: terminator.vt

• vtkInteractorStyleTrackballCamera: Cone.vt - 5

• vtkLight: cubeAxes.vt, faultLines.vt

• vtkLine: BuildUGrid.vt

• vtkLineSource: streamSurface.vt, xyPlot.vt

• vtkLineWidget: StreamlinesWithLineWidget.vt

• vtkLODActor: TestText.vt, stl.vt, CADPart.vt, vtk.vt - Implicit Plane Clipper, TransformWithBoxWidget.vt,
BandContourTerrain.vt, cubeAxes.vt, ImplicitPlaneWidget.vt, FilterCADPart.vt, ColorIsosurface.vt

• vtkLookupTable: brain_vistrail.vt, vtk_book_3rd_p193.vt, pointToCellData.vt, BandContourTerrain.vt, Ex-
tractUGrid.vt, Medical3.vt, rainbow.vt, PseudoVolumeRendering.vt

• vtkMaskPoints: vtk_book_3rd_p193.vt, spikeF.vt

• vtkMassProperties: triangle_area.vt - CalculateArea

• vtkMergeFilter: imageWarp.vt

• vtkOpenGLVolumeTextureMapper3D: lung.vt - TextureWithShading

• vtkOutlineFilter: VisQuad.vt, probeComb.vt, ExtractGeometry.vt, vtk_book_3rd_p189.vt, cubeAxes.vt, Vol-
umeRenderWithBoxWidget.vt, Contours2D.vt, Medical1.vt, Medical2.vt, Medical3.vt

• vtkPDBReader: protein_visualization.vt, structure_or_id_webservice.vt

• vtkPerlinNoise: PerlinTerrain.vt

• vtkPiecewiseFunction: lung.vt, SimpleRayCast.vt, mummy.xml - volume rendering, SimpleTex-
tureMap2D.vt, VolumeRenderWithBoxWidget.vt

• vtkPixel: BuildUGrid.vt

• vtkPlane: lung.vt - TS and plane, CutCombustor.vt, terminator.vt, vtk.vt - Implicit Plane Clipper, Implicit-
PlaneWidget.vt, iceCream.vt, PerlinTerrain.vt, ClipCow.vt

• vtkPlanes: VolumeRenderWithBoxWidget.vt

• vtkPlaneSource: Tplane.vt, terminator.vt, probeComb.vt

3.11. Module Descriptions and Examples 67

VisTrails Documentation, Release 2.0.3

• vtkPlaneWidget: ProbingWithPlaneWidget.vt

• vtkPLOT3DReader: ProbingWithPlaneWidget.vt, StreamlinesWithLineWidget.vt, CutCombustor.vt, Sub-
sampleGrid.vt, TextureThreshold.vt, xyPlot.vt, probeComb.vt, ProbeWithPointWidget.vt, rainbow.vt, Col-
orIsosurface.vt, streamSurface.vt, warpComb.vt, PseudoVolumeRendering.vt

• vtkPointData: marching.vt, Arrays.vt, BuildUGrid.vt

• vtkPointDataToCellData: pointToCellData.vt

• vtkPoints: CreateStrip.vt, marching.vt, constrainedDelaunay.vt, Arrays.vt, BuildUGrid.vt

• vtkPointSource: GenerateTextureCoords.vt, officeTube.vt

• vtkPointWidget: ProbeWithPointWidget.vt

• vtkPolyData: CreateStrip.vt, ProbingWithPlaneWidget.vt, constrainedDelaunay.vt, StreamlinesWithLineWid-
get.vt, Arrays.vt, ProbeWithPointWidget.vt, ClipCow.vt

• vtkPolyDataInspector: ClipCow.vt

• vtkPolyDataNormals: brain_vistrail.vt, pointToCellData.vt, Medical1.vt , faultLines.vt, ExtractUGrid.vt,
smoothFran.vt, cubeAxes.vt, Medical2.vt, Medical3.vt, ClipCow.vt, ColorIsosurface.vt, warpComb.vt,
PerlinTerrain.vt, spikeF.vt, PseudoVolumeRendering.vt, BandContourTerrain.vt

• vtkPolyDataReader: hello.vt, faultLines.vt, smoothFran.vt, spikeF.vt

• vtkPolygon: BuildUGrid.vt

• vtkPolyLine: BuildUGrid.vt

• vtkPolyVertex: BuildUGrid.vt

• vtkProbeFilter: brain_vistrail.vt, ProbingWithPlaneWidget.vt, xyPlot.vt, probeComb.vt, ProbeWithPointWid-
get.vt

• vtkProperty2D: xyPlot.vt

• vtkPyramid: BuildUGrid.vt

• vtkQuad: BuildUGrid.vt

• vtkQuadraticDecimation: spx.vt - Decimate

• vtkQuadric: VisQuad.vt, ExtractGeometry.vt, vtk_book_3rd_p189.vt, Contours2D.vt

• vtkRandomGraphSource: infovis.vt - hello_world

• VTKRenderOffscreen: offscreen.vt

• vtkRibbonFilter: StreamlinesWithLineWidget.vt

• vtkRuledSurfaceFilter: streamSurface.vt

• vtkRungeKutta4: StreamlinesWithLineWidget.vt, officeTube.vt, streamSurface.vt

• vtkSampleFunction: VisQuad.vt, ExtractGeometry.vt, vtk_book_3rd_p189.vt, iceCream.vt, Contours2D.vt,
PerlinTerrain.vt

• vtkScaledTransferFunction: head.vt - volume rendering, terminator.vt

• vtkShrinkFilter: ExtractGeometry.vt

• vtkShrinkPolyData: marching.vt, filterCADPart.vt

• vtkSmoothPolyDataFilter: xyPlot.vt

• vtkSphere: iceCream.vt, ExtractGeometry.vt

68 Chapter 3. Learning VisTrails By Example

VisTrails Documentation, Release 2.0.3

• vtkSphereSource: TestText.vt, marching.vt, assembly.vt, vtk.vt - Implicit Plane Clipper, TransformWith-
BoxWidget.vt, ImplicitPlaneWidget.vt

• vtkSTLReader: stl.vt, CADPart.vt, FilterCADPart.vt

• vtkStreamLine: StreamlinesWithLineWidget.vt, officeTube.vt, streamSurface.vt

• vtkStripper: brain_vistrail.vt, Medical2.vt, Medical3.vt, ClipCow.vt

• vtkStructuredGridGeometryFilter: CutCombuster.vt, officeTube.vt, TextureThreshold.vt, rainbow.vt, warp-
Comb.vt

• vtkStructuredGridOutlineFilter: StreamlinesWithLineWidget.vt, officeTube.vt, SubsampleGrid.vt, Tex-
tureThreshold.vt, xyPlot.vt, probeComb.vt, ProbeWithPointWidget.vt, rainbow.vt, ColorIsosurface.vt,
streamSurface.vt, warpComb.vt, PseudoVolumeRendering.vt, ProbingWithPlaneWidget.vt, CutCombus-
tor.vt

• vtkStructuredGridReader: officeTube.vt

• vtkStructuredPointsReader: lung.vt, vtk_book_3rd_p193.vt, SimpleRayCast.vt, TextureThreshold.vt,
head.vt - volume rendering, mummy.xml - volume rendering, head.vt - alias, mummy.xml - Isosurface,
terminator.vt, SimpleTextureMap2D.vt

• vtkTetra: BuildUGrid.vt

• vtkTextActor: TestText.vt

• vtkTextProperty: TestText.vt, xyPlot.vt, cubeAxes.vt

• vtkTexture: Tplane.vt, TextureThreshold.vt, terminator.vt, GenerateTextureCoords.vt

• vtkTextureMapToCylinder: GenerateTextureCoords.vt

• vtkThreshold: pointToCellData.vt

• vtkThresholdPoints: vtk_book_3rd_p193.vt, marching.vt

• vtkThresholdTextureCoords: TextureThreshold.vt

• vtkTransform: marching.vt, terminator.vt, xyPlot.vt, TransformWithBoxWidget.vt, Cone.vt - 6, probe-
Comb.vt, ExtractGeometry.vt, spikeF.vt

• vtkTransformPolyDataFilter: marching.vt, xyPlot.vt, probeComb.vt, spikeF.vt

• vtkTransformTextureCoords: GenerateTextureCoords.vt

• vtkTreeMapView: infovis.vt

• vtkTreeRingView: infovis.vt

• vtkTriangle: BuildUGrid.vt

• vtkTriangleFilter: triangle_area.vt - CalculateArea, ClipCow.vt

• vtkTriangleStrip: BuildUGrid.vt

• vtkTubeFilter: marching.vt, constrainedDelaunay.vt, officeTube.vt, officeTubes.vt, xyPlot.vt, faultLines.vt,
PseudoVolumeRendering.vt

• vtkUnstructuredGrid: BuildUGrid.vt, marching.vt

• vtkUnstructuredGridReader: offscreen.vt, spx.vt, pointToCellData.vt

• vtkVectorText: textOrigin.vt, marching.vt

• vtkVertex: BuildUGrid.vt

• VTKViewCell: infovis.vt

3.11. Module Descriptions and Examples 69

VisTrails Documentation, Release 2.0.3

• vtkViewTheme: infovis.vt - cone_layout

• vtkVolume: lung.vt, SimpleRayCast.vt, head.vt - volume rendering, mummy.xml - volume rendering, termina-
tor.vt, SimpleTextureMap2D.vt, VolumeRenderWithBoxWidget.vt

• vtkVolume16Reader: VolumeRenderWithBoxWidget.vt, Medical1.vt, Medical2.vt, Medical3.vt

• vtkVolumeProperty: lung.vt, SimpleRayCast.vt, head.vt - volume rendering, mummy.xml - volume rendering,
terminator.vt, SimpleTextureMap2D.vt, VolumeRenderWithBoxWidget.vt

• vtkVolumeRayCastCompositeFunction: lung.vt - raycasted, SimpleRayCast.vt, mummy.xml - volume ren-
dering, terminator.vt - SW, VolumeRenderWithBoxWidget.vt

• vtkVolumeRayCastMapper: lung.vt - raycasted, SimpleRayCast.vt, mummy.xml - volume rendering, termi-
nator.vt - SW, VolumeRenderWithBoxWidget.vt

• vtkVolumeTextureMapper2D: SimpleTextureMap2D.vt

• vtkVolumeTextureMapper3D: head.vt - volume rendering, terminator.vt - HW

• vtkVoxel: BuildUGrid.vt

• vtkWarpScalar: imageWarp.vt, BandContourTerrain.vt, warpComb.vt

• vtkWarpVector: pointToCellData.vt, ExtractUGrid.vt

• vtkWedge: BuildUGrid.vt

• vtkWindowLevelLookupTable: terminator.vt

• vtkXMLTreeReader: infovis.vt

• vtkXYPlotActor: xyPlot.vt

70 Chapter 3. Learning VisTrails By Example

CHAPTER

FOUR

INTERMEDIATE CONCEPTS AND
VISTRAILS PACKAGES

4.1 Control Flow in VisTrails

Scientific workflows usually follow a dataflow model, but, in some cases, control structures, including loops and
conditionals, are necessary to accomplish certain tasks. VisTrails provides the Control Flow package to support
these and other structures. To create your own Control Flow modules, please refer to the Developer’s Guide
(Creating a Control Flow Loop Module). Or, if you would like to use the Control Flow Assistant, to simplify the
process described in this chapter, please refer to The Control Flow Assistant.

4.1.1 The Map operator

In functional programming, map is a high-order function that applies a given function to a list (each element of the
list is processed using this function) and returns a sequence of results. The Map module provides this functionality
for workflows in VisTrails. Note that this module provides simple looping as it can be used to iterate through a list of
inputs.

In order to use the Map module, a ListOfElements type representing a list of data structures is also provided. Two
additional modules help users combine elements of lists: Dot combines the elements of two lists like the dot product
(the first element of the first list is combined with the first of the second one, the second element of the first list is
combined with the second of the second one, and so on), and Cross combines the elements as the cross product (all
the possible combinations between the elements of the lists); both modules return a list of tuples. In addition to two
lists of elements as input ports, they take an optional boolean input named “CombineTuple”. This input is useful when
one or both input lists have tuples as elements; if this port is selected, and its value is False, the elements of the list
will not be combined in just one tuple, e.g., (1, 2) + 3→ ((1, 2), 3); otherwise, the elements will be combined, e.g., (1,
2) + 3→ (1, 2, 3).

The Map module has four input ports:

• “FunctionPort”: this port receives the module (via the “self” output port) that represents the function to be
applied for each element of the input list; if the function uses more than one module, you must use a Group
(see Chapter Groups and Subworkflows) or a SubWorkflow and connect that composite module to this port;

• “InputPort”: this port receives a list of the names of the input ports that represent the individual arguments of
the function;

• “OutputPort”: this port receives the name of the output port that represents the individual result of the function;

• “InputList”: this port receives the input list for the loop; it must be a list of tuples if more than one function
input port was chosen.

71

VisTrails Documentation, Release 2.0.3

The output port “Result” produces a list of results, one for each element in the input list.

To better show how to use the Map module, let’s use a workflow as an example. Inside the “examples” directory of
the VisTrails distribution, open the “triangle_area.vt” vistrail. Now, select the “Surface Area” version. This version
basically calculates the area of a given isosurface. We are going to modify this version, in order to calculate the areas
of the isosurface given by contour values in a list. Then, we will create a 2D plot to show all the areas.

Try it Now!

Begin by deleting the StandardOutputmodule, and the connection between the vtkDataSetReader and
the vtkContourFilter modules. Then, drag the following modules to the canvas:

• Map
• ListOfElements
• Cross
• MplPlot (under “matplotlib”)
• MplFigure (under “matplotlib”)
• MplFigureCell (under “matplotlib”)
• InputPort (under “Basic Modules”) - you will need two of them
• OutputPort (under “Basic Modules”)
• PythonSource (under “Basic Modules”)

Notice that when you drag Map to the pipeline canvas it will be drawn in a different shape from the other modules.
This is a visual cue to help distinguish control modules from other modules. All control modules have the same shape.

Next Step!

Select the vtkContourFilter module and delete its method “SetValue” in the Set Methods container.
Then, open its configuration dialog (you can use the “Ctrl-E” or “Command-E” keyboard shortcut) and enable
this method (the input port “SetValue”) by clicking on it, and pressing OK.
Then, connect the modules as shown in Figure Connecting a subset of the modules to be grouped as a SubWork-
flow.

Figure 4.1: Connecting a subset of the modules to be grouped as a SubWorkflow

These modules represent the function we wish to map: each element of the input list will be processed using them. Be-

72 Chapter 4. Intermediate Concepts and VisTrails Packages

VisTrails Documentation, Release 2.0.3

cause we have more than one module, we need to create a Group or a SubWorkflow to identify the entire function.
The InputPort and the OutputPort modules are necessary to expose these ports in the Group/SubWorkflow
structure.

Next Step!

In this example, we will use a SubWorkflow structure. Select all the modules shown in Figure Connecting
a subset of the modules to be grouped as a SubWorkflow, go to the Edit menu, and then click on Make
SubWorkflow. You can name it CalculateArea. Select this SubWorkflow and open its configuration.
When the configuration dialog opens, enable the output port “self” and press OK. You will need this port to
connect to the Map module.

Note

When using Map, the module (or subworkflow) used as function port in the map module MUST be a function,
i.e., it can only define 1 output port.

Next Step!

Now, select the MplPlot module and open its configuration dialog. Inside it, add two input ports of type
ListOfElements: “InputList” and “X_Values”. Also, copy the code listed below, in order to create the
necessary information for the 2D plot, into the source text area and save your changes using the OK button.

subplot(212)

dashes = [1, 3]
list1 = self.getInputFromPort("InputList")
list2 = self.getInputFromPort("X_values")
list3 = []

for i in xrange(len(list1)):
list3.append(list2[i][1])

l, = plot(list3, list1, marker="o", markerfacecolor="red",
markersize=7, label="IsoSurface Areas", linewidth=1.5)

l.set_dashes(dashes)

Next Step!

Next, edit the PythonSource module by adding an output port “List” of type ListOfElements, copying
the following code to the source text area, and saving these changes. The code will create a range of contour
values that we will use as our input list.

result = []

for i in xrange(4, 256, 4):
result.append(i)

self.setResult("List", result)

4.1. Control Flow in VisTrails 73

VisTrails Documentation, Release 2.0.3

Next Step!

It may be helpful to identify this PythonSource module by labeling it as RangeList. Connect all the
modules as shown in Figure All the modules connected in the canvas.

Figure 4.2: All the modules connected in the canvas

Next Step!

You will set some parameters now:
• HTTPFile: set the parameter “url” to http://www.sci.utah.edu/~cscheid/stuff/head.120.vtk
• ListOfElements: set the parameter “value” to [0]
• Map: set the parameter “InputPort” to [”SetValue”] and the parameter “OutputPort” to GetSurfaceArea

The workflow is now ready to be executed. When you execute the workflow, you will see the SubWorkflow
CalculateArea executing several times (one time for each value of the input list). It’s important to notice that,
although only the module connected to Map (in this example, the SubWorkflow Calculate Area) will be in the
loop, the modules above it will be also used in each loop iteration; the difference is that they are going to be executed
only for the first iteration; in all other iterations, the results will be taken from the cache.

When the workflow finishes its execution, the VisTrails Spreadsheet will contain a 2D plot (Figure The result in the
VisTrails Spreadsheet).

This example can be found in the version “Surface Area with Map”, inside the “triangle_area.vt” vistrail.

74 Chapter 4. Intermediate Concepts and VisTrails Packages

http://www.sci.utah.edu/~cscheid/stuff/head.120.vtk

VisTrails Documentation, Release 2.0.3

Figure 4.3: The result in the VisTrails Spreadsheet

4.1.2 Filtering results

When computing large lists of results, it can be useful to selectively reduce the list during execution to avoid unneces-
sary computation.

The Filter module was developed to address this issue. It receives an input list and, based on a specified boolean
condition, returns only elements of the list that satisfy the condition. Its ports are the same as those in the Map module.
The difference between these modules is related to the structure: in Filter, the output port “FunctionPort” cannot
receive any function, but only a condition; in other words, the selected port in “OutputPort” must return a boolean
value or Filter will not work. Thus, Filter will not return a list with boolean values as Map would do, but rather
the elements of the input list for which the condition evaluated to True.

Try it Now!

To better understand how Filter works, let’s modify our earlier example to filter out areas less than 200,000.
With the previous vistrail open (you can use the “Surface Area with Map” version), add the following modules
to the canvas:

• Filter
• PythonSource (under “Basic Modules”)

Edit the configuration of PythonSource by adding an input port of type Float named “Area”, and an output
port of type Boolean named “Condition”, and writing the following code inside the source text area:

area = self.getInputFromPort("Area")

if area>200000.00:
self.setResult("Condition", True)

else:

4.1. Control Flow in VisTrails 75

VisTrails Documentation, Release 2.0.3

self.setResult("Condition", False)

Next Step!

Press the OK button. You can label this PythonSource as FilterCondition. Now, reorganize the mod-
ules in the canvas as shown in Figure The new organization of the modules in the canvas.

Figure 4.4: The new organization of the modules in the canvas

Next Step!

Select the Filter module and set the values of its parameters to the following:
• “InputPort”: [”Area”]
• “OutputPort”: Condition

When you execute this workflow, it will generate another plot that is similar to the one from the Map example, but
only areas above 200,000 are considered (Figure The result in the VisTrails spreadsheet).

This example is already inside the “triangle_area.vt” vistrail, in the “Surface Area with Map and Filter” version.

Later in this chapter, you will see how to combine Map and Filter in one single module, by creating your own
control structure.

4.1.3 Conditional module

Conditional statements are a very important control flow structure frequently used in programming languages, and the
if structure is probably the most common of these structures. In scientific workflows, for example, an if structure
can be used to select the part of the pipeline to be executed based on a boolean condition.

For this reason, the Control Flow package also includes an If module. Its input ports are:

76 Chapter 4. Intermediate Concepts and VisTrails Packages

VisTrails Documentation, Release 2.0.3

Figure 4.5: The result in the VisTrails spreadsheet

• “Condition”: this port receives a boolean value that will specify the direction of computation;

• “TruePort”: this port receives the part of the workflow that will be executed if the condition value is True; you
don’t need to group or make a SubWorkflow in this case: just connect the output port “self” of the last module
in this port;

• “FalsePort”: this port receives the part of the workflow that will be executed if the condition value is False; as
with the

• “TruePort” port, you don’t need to group or make a SubWorkflow;

• “TrueOutputPorts”: this port receives a list that contains the names of the output ports of the module connected
to “TruePort” that you want the result of; this port is optional;

• “FalseOutputPorts”: this port receives a list that contains the names of the output ports of the module connected
to “FalsePort” that you want the result of; this port is optional.

The If module has an output port named “Result” that returns a list with the results of the specified output ports of
“TrueOutputPorts” or “FalseOutputPorts”, depending on the condition value. If only one output port is chosen, the
result of this port will not be returned in a list. If “TrueOutputPorts” or “FalseOutputPorts” are not enabled, “Result”
returns None.

Let’s do now a simple example to show how this module works. This example is from the bioinformatics domain,
and takes a string as the input. If this string is a structure identifier, a web service from the European Bioinformatics
Institute - EBI (http://www.ebi.ac.uk/) is used to put the structure into PDB format (a standard representation for
macromolecular structure) and the VTK package is used to show the protein in the VisTrails Spreadsheet. Otherwise,
the input is assumed to be invalid and a message is generated in the Spreadsheet.

4.1. Control Flow in VisTrails 77

http://www.ebi.ac.uk/

VisTrails Documentation, Release 2.0.3

Try it Now!

First, the EBI’s web service must be enabled. For this, you need to add the following url to the wsdlList
configuration:
http://www.ebi.ac.uk/Tools/webservices/wsdl/WSDbfetch.wsdl
Don’t forget to ensure that the webServices package is enabled in the Preferences dialog. For more
information about web services in VisTrails, see Chapter Example: Web Services.
Now, you’re going to drag the following modules to the canvas:

• If
• fetchData (under “Methods” for the current web service)
• vtkPDBReader (under “VTK”)
• vtkDataSetMapper (under “VTK”)
• vtkActor (under “VTK”)
• vtkRenderer (under “VTK”)
• VTKCell (under “VTK”)
• PythonSource (under “Basic Modules”) - you will need three of them
• String (under “Basic Modules”)
• RichTextCell (under “VisTrails Spreadsheet”)

Select one of the PythonSource modules, and open its configuration dialog. Inside it, add one input port
of type String, named “PDB_format”, and one output port of type File, named “File”. Then, write the
following code:

1 PDB_format = self.getInputFromPort(’PDB_format’)
2

3 output = self.interpreter.filePool.create_file()
4 file_ = open(str(output.name), ’w’)
5 file_.write(PDB_format)
6

7 self.setResult(’File’, file_)
8

9 file_.close()

Next Step!

You can name this module as CreateFile. Now, set some paremeters of fetchData:
• “format”: pdb
• “style”: raw

Next, connect some modules as shown in Figure Some modules of the workflow connected.

The aim of this group of modules is to get the PDB format of the structure ID, through the web service, and then make
the visualization with the VTK package. This is the part of the workflow that will be executed if the input is a structure
identifier.

Next Step!

Next, select another PythonSource module and open its configuration dialog too. One input port named
“Structure”, of type String, and one output port named “Is_ID”, of type Boolean, must be added, as well as
the code below:

1 if"\n" in structure:
2 lineLen = structure.index("\n")
3 else:
4 lineLen = -1

78 Chapter 4. Intermediate Concepts and VisTrails Packages

VisTrails Documentation, Release 2.0.3

Figure 4.6: Some modules of the workflow connected

5 if lineLen<1:
6 lineLen = len(structure)
7

8 if ":" in structure:
9 index = structure.index(":")

10 else:
11 index = -1
12

13 if (structure[0]!="ID ") and (index>0) and (index<lineLen):
14 is_ID = True
15 else:
16 is_ID = False
17

18 self.setResult("Is_ID", is_ID)

Next Step!

Name this module as Is_ID. This module will be the condition for the If structure.
Now, select the last PythonSource module, and, inside its configuration, add one input port of type String,
named “Input”, and one output port of type File, named “html”. Then, copy the code below:

1 input = self.getInputFromPort("Input")
2

3 output = self.interpreter.filePool.create_file()
4 f = open(str(output.name), ’w’)
5 text = ’<HTML><TITLE>Protein Visualization</TITLE><BODY BGCOLOR="#FFFFFF">’
6 f.write(text)
7 text = ’<H2>Protein Visualization Workflow</H2>’
8 f.write(text)
9 text = ’<H3>The following input is not an ID from a protein:</H3>’

10 text += ’<H4>’ + str(input) + ’</H4>’
11 text += ’<H3>The visualization cannot be done.</H3>’

4.1. Control Flow in VisTrails 79

VisTrails Documentation, Release 2.0.3

12 f.write(text)
13

14 text = ’</BODY></HTML>’
15 f.write(text)
16

17 self.setResult(’html’, f)
18

19 f.close()

Next Step!

Name this PythonSource as Not_ID. This module will print a message in the VisTrails Spreadsheet when
the input is not a structure identifier.
Finally, the String module can be named as Workflow_Input, to make it clear that it takes the input of the
workflow. Also, open the configuration dialog of RichTextCell to enable the output port “self”, so it can be
connected to the If module. Then, connect all the modules as shown in Figure All the modules connected.

Figure 4.7: All the modules connected

Next Step!

In order to better organize the disposal of the modules, group all the modules shown in Figure Some modules
of the workflow connected by selecting them, going to the Edit menu and clicking on Group. Name it as
Generate_Visualization. Your workflow must correspond to the one shown in Figure The final work-
flow, using the Group structure.

80 Chapter 4. Intermediate Concepts and VisTrails Packages

VisTrails Documentation, Release 2.0.3

Figure 4.8: The final workflow, using the Group structure

Note that this implementation follows exactly the initial specification of the workflow. If the input is a structure iden-
tifier (Is_ID returns True), Generate_Visualization will be executed; otherwise (Is_ID returns False),
Not_ID and RichTextCell will create an error message in the VisTrails Spreadsheet.

Next Step!

For the workflow execution, set the parameter “value” of the Workflow_Input module to PDB:3BG0. This
entry is an ID from a protein; so, the condition will be True, and the Generate_Visualization group
will be executed, generating the visualization shown in Figure The visualization of the protein in the VisTrails
Spreadsheet.

If you change the value from the input port “value” to protein, for example, the condition will be False, and the
message shown in Figure The message in the Spreadsheet, generated when the input is not a structure ID will be
generated in the Spreadsheet.

This example can be found inside the “examples” directory, in the “protein_visualization.vt” vistrail. It was partially
based on the workflow “Structure_or_ID”, which can be found at http://www.myexperiment.org/workflows/225.

4.2 The Control Flow Assistant

4.2.1 Using the Control Flow Assistant (CFA)

In order to simplify the process of creating a control flow loop that uses the Map module, VisTrails has a Control Flow
Assistant (CFA). To use the CFA, you must:

1. Enable all ports (in the Module Information panel) that you wish to use as inputs or outputs.

2. Select the modules in the workflow that will form the basis of your mapped input-output loop.

3. Go to ‘Edit->Control Flow Assistant’ to launch the CFA using the selected modules.

4. Select the input ports that you wish to loop over using List modules as input.

4.2. The Control Flow Assistant 81

http://www.myexperiment.org/workflows/225

VisTrails Documentation, Release 2.0.3

Figure 4.9: The visualization of the protein in the VisTrails Spreadsheet

Figure 4.10: The message in the Spreadsheet, generated when the input is not a structure ID

82 Chapter 4. Intermediate Concepts and VisTrails Packages

VisTrails Documentation, Release 2.0.3

5. Select the output port that you wish to use for the values in the output List.

6. Click OK, and the CFA will generate the control flow structure as a Group module.

7. Connect a List input to each of the inputs on the control flow Group.

8. Connect the Group’s output List (output port ‘Result’) to a suitable module/port, or create a PythonSource
module to handle the List output.

Note: All existing connections to input and output ports selected in steps 4 and 5 will be removed.

List Input

By default, the List inputs will be used sequentially, one from each List, which requires that all List inputs be the
same length. As another option, the Group created by the CFA has a boolean ‘UseCartesianProduct’ parameter. If this
parameter is set to ‘true’ then the cartesian product of all of the input Lists will be used as the input for the Map. Use
caution when using this parameter, as the number of inputs can grow very rapidly with just a few List inputs.

List Output

There are several ways to handle the output List. One option would be to send the output List to a StandardOutput
module to display its contents. Another option is to simply ignore the output List, in the case where you just want part
of the workflow to execute multiple times using different inputs. For example, if the mapped portion of the workflow
contains a VTKCell, and you just want to generate a new VTKCell for each input, you should select the ‘self’ port of
the VTKCell module when choosing the output port in the CFA, and then ignore the output List. For more specialized
handling of the output List, you may wish to create a PythonSource module.

Custom List

For advanced users, the default behavior, or cartesian product behavior may not be sufficient for your needs. If this
is the case, the ‘UserDefinedInputList’ parameter allows you to manually specify the input list. If this parameter is
defined, it will override any input lists already defined or connected. The format for this user-provided input list must
be a list of lists of tuples. Each inner list represents a single loop execution, and contains tuples (or single values
for functions taking only one argument) representing the arguments for each input function to be used in that loop
execution. The order of the argument tuples in the inner lists should match the order in which the functions appear on
the module generated by the CFA.

For example, if the loop has two input functions defined, in order, as SetXY(x, y) and SetZ(z), and we want two
executions of the loop, the input list would be: [[(x1, y1), z1], [(x2, y2), z2]]

Parameter Exploration

One useful purpose for the CFA is to provide a version-based approach to parameter exploration. To create a parameter
exploration for a workflow, you could simply select all modules in the workflow, making sure the ports for the desired
parameters are enabled, then launch the CFA and select the ports of the parameters you wish to explore. By providing
a list for each parameter, you can create a parameter exploration that directly uses the version tree.

4.2. The Control Flow Assistant 83

VisTrails Documentation, Release 2.0.3

Try it Now!

Processing a List of values with PythonCalc:
1. Go to ‘Edit->Preferences’, select the ‘Module Packages’ tab, and enable the ‘pythonCalc’ package if it is

not already enabled.
2. Click on File->New to start a new VisTrail.
3. Add the following modules from the module registry to the VisTrail: a) One ‘PythonCalc’ module from the

‘pythonCalc’ package b) One ‘List’ module from the ‘Basic Modules’ package c) One ‘StandardOutput’
module from the ‘Basic Modules’ package

4. Set the List ‘value’ parameter to: [1.0, 2.0, 3.0, 4.0, 5.0]
5. Set the PythonCalc ‘op’ parameter to: ‘*’
6. Set the PythonCalc ‘value2’ parameter to: 2.0
7. With the PythonCalc module selected, go to ‘Edit->Control Flow Assistant’ (see Figure Example 1.1):

(a) Click on the input port ‘value1’ and ensure it is highlighted
(b) Click on the output port ‘value’ and ensure it is highlighted
(c) Click ‘OK’ to close the window and build the loop structure as a Group module (see Figure Example

1.2)
8. Connect the ‘List’ module’s output port ‘value’ to the ‘Group’ module’s input port ‘value1’.
9. Connect the ‘Group’ module’s output port ‘Result’ to the ‘StandardOutput’ module’s input port ‘value’

(see Figure Example 1.3)
10. Execute the current workflow.
11. In your Standard Output console, you should see a List containing the computation for each element in

the input list: [2.0, 4.0, 6.0, 8.0, 10.0]

Figure 4.11: Example 1.1 - Running the Control Flow Assistant

84 Chapter 4. Intermediate Concepts and VisTrails Packages

VisTrails Documentation, Release 2.0.3

Figure 4.12: Example 1.2 - Selecting relevant ports.

Figure 4.13: Example 1.3 - The connected pipeline.

4.2. The Control Flow Assistant 85

VisTrails Documentation, Release 2.0.3

Try it Now!

Performing a Parameter Exploration:
1. Go to ‘File->Open’, explore to the VisTrails examples folder, and open ‘spx.vt’
2. Open the History view and select the version tagged as ‘decimate’.
3. Open the Pipeline view.
4. Select the ‘vtkContourFilter’ module and enable the ‘SetValue’ input port by clicking to the left of ‘Set-

Value’ in the Module Information panel (see Figure Example 2.1).
5. Click on ‘Edit->Select All’.
6. With all modules selected, go to ‘Edit->Control Flow Assistant’:

(a) Click on the ‘vtkContourFilter’ module’s input port ‘SetValue’ and ensure it is highlighted
(b) Click on the ‘VTKCell’ module’s output port ‘self’ and ensure it is highlighted (see Figure Example

2.2)
(c) Click ‘OK’ to close the window and build the loop structure as a Group module

7. Select the newly created ‘Group’ module, and set the ‘SetValue’ parameter to: [(0, 0.5), (0, 0.75), (0, 1.0)]
8. Execute the current workflow.
9. In your VisTrails Spreadsheet, you should see three visualizations, one for each set of input parameters to

the ‘SetValue’ port of ‘vtkContourFilter’ (see Figure Example 2.3).

Figure 4.14: Example 2.1 - Enabling a port for use with the control flow assistant.

4.3 Connecting to a Database

As an environment for collaborative scientific exploration, VisTrails supports both stand-alone, file-based storage and
relational storage of vistrails. With a relational database supporting VisTrails, multiple users can easily collaborate on
projects without copying files back and forth. At the same time, if you choose to work without being connected to a
database, you can save your work locally to files. Finally, VisTrails can import and export to both types of storage so
you can import a vistrail from the database, save it locally as a file on your computer, make and save changes, and
export those changes back to the database. Remember that because the complete workflow evolution is always saved,
other users will not overwrite your changes, and vice versa. This prevents users from “stepping on each other’s feet.”

By default, VisTrails works with local files stored in the ”.vt” format (essentially compressed XML). You can save a
vistrail as uncompressed XML by saving the file with a ”.xml” extension. When saving a vistrail, the system displays
a standard save dialog. These files have a version associated with them so when the schema for these files may change,
VisTrails will be able to import older versions. The current version of the XML schema can be found in the distribution
at:

vistrails/db/versions/v1_0_2/schemas/xml/vistrail.xsd

where v1_0_2 is the current version.

86 Chapter 4. Intermediate Concepts and VisTrails Packages

VisTrails Documentation, Release 2.0.3

Figure 4.15: Example 2.2 - Selecting relevant ports.

Figure 4.16: Example 2.3 - The spreadsheet results using the list: [(0, 0.5), (0, 0.75), (0, 1.0)] as input to the contour
filter via the control flow assistant.

4.3. Connecting to a Database 87

VisTrails Documentation, Release 2.0.3

4.3.1 Setup

As described earlier, VisTrails supports relational database storage as well as file-based storage. Currently, VisTrails
has been tested with MySQL, but in the future, we plan to support most standard relational database systems.

Setting up the database

Before using VisTrails with a relational database, you must have a database installed and have access to create, access,
and modify that database. If you are planning to deploy for institution-wide access, you should consult your system
administrator to determine the correct configuration. The database schema for VisTrails can be found in the distribution
at:

vistrails/db/versions/v1_0_2/schemas/sql/vistrails.sql

where v1_0_2 is the current version. This schema contains a sequence of SQL commands that define the tables
needed for storing vistrails.

After you or someone else has created the database for the vistrails, you will need the following information:

1. hostname: the name or IP address of the machine that stores the database (localhost if it is your own
machine)

2. port: the port number that you connect to the database on

3. user: the username that should be used to access and modify the vistrails database

4. password: the password for the account corresponding to the given user

5. database name: the name of the database where the vistrails are to be stored.

Setting up VisTrails

If you are planning to use the database for most of your work, you can configure VisTrails to open vistrails from
the database by default. To do so, select the Preferences option from the Edit menu. (On Mac OS X, the
Preferences option is found under the VisTrails menu.) When the Preferences window opens, select the
appropriate option from the “Read/Write to database by default” box in the General Configuration tab.

4.3.2 Opening from a database

To open a vistrail from a relational database, choose the Import option from the File menu. You should see a
dialog like the one pictured in Figure Opening a vistrail from the database. (Alternatively, if you have set VisTrails to
use a relational database by default (see Section Setting up VisTrails), then you should select File→ Open from the
menu or the Open button on the toolbar.)

If you have previously connected to databases using VisTrails, you should see a list of these databases in the left
column of the dialog. If not, you will need to add one. To do so, click the + icon in the lower-left corner. This will
bring up a dialog like that shown in Figure Creating a new database connection. To set up a connection, you will need
the database connection information outlined in Section Setting up the database. After filling in that information, you
can test the connection by clicking the Test button. If the test succeeds, click the Create button to add the database
to the available sources for vistrails.

The database you wish to use should now be listed in the left column. Clicking on that row will query the database
for a list of vistrails available from the database and display them in the right column. To open a vistrail, select the
desired vistrail and click the Open button or simply double-click the vistrail. When the vistrail has loaded, you will
be able to interact with it in exactly the same way as a vistrail loaded from a file.

88 Chapter 4. Intermediate Concepts and VisTrails Packages

VisTrails Documentation, Release 2.0.3

Figure 4.17: Opening a vistrail from the database

Figure 4.18: Creating a new database connection

4.3.3 Saving to a database

If you opened a vistrail from the database, the default save action will be to save that vistrail back to the database.
There will be no dialogs displayed—the database the vistrail was loaded from will be automatically updated.

If you opened the vistrail from a file, you will need to select either Save As or Export from the File menu,
depending on whether VisTrails uses the database by default (see Section Setting up VisTrails). You will be shown a
dialog similar to the one in Figure Saving a vistrail to the database. As discussed in Section Opening from a database,
you can create a new connection to the database or use an existing one. Note that the name of the vistrail must differ
from those already stored on the database, and clicking the Save button will persist the changes to the database.

Figure 4.19: Saving a vistrail to the database

4.3. Connecting to a Database 89

VisTrails Documentation, Release 2.0.3

4.3.4 Known Issues

Currently, saving a vistrail to the database will overwrite the vistrail currently stored on the database. However, we
plan to add synchronization soon so that all explorations are captured. Thus, be aware that if two users have the same
vistrail loaded from the database at the same time, and both users save their changes, only the second user’s changes
will be captured.

4.4 Example: Web Services

A web service grants you programmatic access to an online data source via a straightforward API. In this chapter, you
will learn how to invoke web services from within VisTrails workflows. We will build a simple workflow that invokes
a web service and generates an HTML table with the results. Our current example is intentionally simple; for more
in-depth examples, please refer to the VisTrails website.

Where we’re going in this chapter: The European Bioinformatics Institute maintains ChEBI, 1 a database of over
15,000 chemical compounds. Each entity is referenced by a unique ID number, called its chebiID. To see an example
of the kind of queries we will build in this example, go to http://www.ebi.ac.uk/chebi/webServices.do and scroll down
until you find the web form labeled “getCompleteEntity.” (Figure (a) Web browser interface for the ChEBI database).
If you type 15357 into the text field, it will return a long string of data in XML format about this chemical. We learn,
among other things, that this chemical’s name is acetylenedicarboxylate(-2).

To try another query, scroll down to the area labeled “getOntologyChildren” and type 15357 into the text field. This
returns an XML representation of this chemical’s ontology children. In this case, the result is a single chemical,
acetylenedicarboxylate(-1), whose chebiID is 30782 (Figure (b) Results from a “getOntologyChildren” query).

Figure 4.20: (a) Web browser interface for the ChEBI database

In this example, we will build a workflow that accesses a web service to perform the second of these two queries.
Because we’re using a web service, we don’t need a browser — we will perform this query programmatically within
VisTrails.

1 ChEBI is an acronym for Chemical Entities of Biological Interest.

90 Chapter 4. Intermediate Concepts and VisTrails Packages

http://www.ebi.ac.uk/chebi/webServices.do

VisTrails Documentation, Release 2.0.3

Figure 4.21: (b) Results from a “getOntologyChildren” query

4.4.1 Enabling the SUDSWebServices Package

In order to use web services in VisTrails, you need to ensure that the SUDSWebServices package is enabled in
the Preferences dialog. (Please refer to Chapter Writing VisTrails Packages for more information on enabling
packages.)

4.4.2 Adding Web Service Packages

Within the Module Packages tab of the Preferences dialog, click the Configure button to open the con-
figuration dialog for this package(SUDSWebServices). Select the wsdlList and click on the Value field. This
is where you will enter the URL(s) of the web service(s) you wish to access. If there is more than one URL, place a
semicolon (;) between each URL, but not after the final URL. In other words, the URLs must be semicolon-delimited,
but not semicolon-terminated.

For our example, we need the following URL:

http://www.ebi.ac.uk/webservices/chebi/2.0/webservice?wsdl

After closing the dialog, you need to reload the SUDSWebServices package in order to load the changes. Then,
close the Preferences dialog. A new package will be created for each URL provided.

Alternatively, you may add a web service package by clicking the secondary mouse button on the “SUDS Web Ser-
vices” package in the module palette and entering the corresponding URL. You may remove a web service by clicking
the secondary mouse button on the corresponding package in the module palette and selecting Remove this Web
Service.

4.4.3 Creating a new vistrail

After configuring the SUDSWebServices package properly, there will be a SUDSWebServices entry in your
Modules panel. The SUDSWebServices package will generate a module for each published method in a web
service.

4.4. Example: Web Services 91

VisTrails Documentation, Release 2.0.3

Start with a new empty workflow in the Pipeline view, and drag the following modules to the canvas.

• String (under “Basic Modules”)

• getOntologyChildren (under “Methods” for the current web service)

• getOntologyChildrenResponse (under “Types” for the current web service)

• OntologyDataItemList (under “Types” for the current web service)

• PythonSource (under “Basic Modules”)

• RichTextCell (under “Spreadsheet”)

As discussed in Chapter Creating and Modifying Workflows, PythonSource has no input and output ports by
default; we need to create some. Open the configuration dialog for PythonSource by selecting this module in
the pipeline canvas and typing ‘Ctrl-E’. Add a new input port named “ontologyDataItemList” of type List, and a
new output port named “outfile” of type File. (Please refer to Chapter Creating and Modifying Workflows for more
information about configuring and using the PythonSource module.)

We will now add some Python code to this module. This code generates a simple HTML table based on the information
retrieved from the web service query. Type or paste the following source code into the PythonSource configuration
dialog:

dataitemlist = self.getInputFromPort("ontologyDataItemList")
output1 = self.interpreter.filePool.create_file()
f1 = open(str(output1.name), "w")
text = "<HTML><TITLE>Chebi WebService</TITLE><BODY BGCOLOR=#FFFFFF>"
f1.write(text)
text = "<H2>getOntologyChildren Query</H2>
"
f1.write(text)
text = "<CENTER><table border = 1><tr><TH>ChebiId</TH> <TH>ChebiName</TH>"
text += "<TH>Comments</TH> <TH>Type</TH> <TH>Status</TH>"
text += "<TH>CyclicRelationship</TH></tr>"
f1.write(text)
for element in dataitemlist:

if not hasattr(element,’Comments’) or str(element.Comments) == ’[]’:
comment = ""

else:
comment = str(element.Comments)

line = "<tr><td>" + str(element.chebiId) + "</td><td>" + str(element.chebiName)
line += "</td><td>" + comment + "</td><td>" + str(element.type) + "</td><td>"
line += str(element.status) + "</td><td>" + str(element.cyclicRelationship)
line += "</td></tr>"
f1.write(line)

text = "</table></CENTER></BODY></HTML>"
f1.write(text)
self.setResult("outfile",output1)
f1.close()

Close the dialog. One of the ports we need to use is an optional port. Select the OntologyDataItemList
module and select the Outputs tab from the Module Information panel. Click in the left column next to
ListElement so the eye icon appears. Now connect the modules together as shown in Figure Our example pipeline.

Our workflow is now complete except for one crucial element: the starting point. We need to pass a chebiID string to
the workflow in order to look up information about a chemical. We do this by assigning a chebiID string to the String
module at the top of the pipeline. Highlight the String module in the canvas, then in the Module Information
panel on the right, make sure the Inputs tab is selected and click on value and type CHEBI:15357 into the
String input box that comes up.

92 Chapter 4. Intermediate Concepts and VisTrails Packages

VisTrails Documentation, Release 2.0.3

Figure 4.22: Our example pipeline

4.4.4 Executing the workflow

The workflow is now ready to be visualized. Click the Execute button to send the current pipeline with the current
parameters to a RichTextCell within the VisTrails Spreadsheet. Your result should resemble Figure The HTML
table generated by our workflow. As you can see, the “ontology children” query returns the same information as
before, but without the use of a web browser. In addition, we used a small Python program (via the PythonSource
module) to transform the raw XML into a readable HTML table.

4.5 Persistence in VisTrails

The Persistence package in Vistrails helps improve reproducibility by associating versions of data files with their
provenance, and minimize the need to rerun lengthy executions by keeping intermediate persistent files. Although, we
will focus primarily on the use of persistent files, persistent directories are used in the same manner. The difference is
that a persistent directory deals with multiple files within a directory rather than a single file.

4.5.1 Getting Started With Persistence

A persistent file is simply a file that is kept in a repository and identified by an id and version string and annotated with
a signature and content hash. To begin, notice that there are three persistent file/directory types: input, intermediate,
and output. It is helpful to understand the differences among these files as well as their distinguishing characteristics
and configuration options.

4.5. Persistence in VisTrails 93

VisTrails Documentation, Release 2.0.3

Figure 4.23: The HTML table generated by our workflow

Input Files

To use a persistent input file, after dragging it onto the canvas, it is necessary to edit the configuration (Ctrl+E). For
an input file, one can either create a new reference to an existing local file, or use a file that exists in the database. To
create a new reference, select Create New Reference and either enter the path to the file, or select the folder
icon on the right to browse local directories for a file. Then, give the file a name and any appropriate tags to help
identify the file. Select OK. The file will be added to the repository. If the file is already in the repository, select Use
Existing Reference and select the appropriate file. You may use the search box to search for particular files by
name, tag, ID, or content hash.

Note

A new version of a persistent file is created each time its contents change. A persistent input file will always use
the most recent version of a file if it is assigned to the root of the file tree.

The PersitentInputFile module can also be used to read or write data directly from or to a local file. To use
this feature, you will need to set localPath to point to a local file. This can be done in the Set Methods Panel,
the Configuration Dialog, or by connecting a file to the localPath input port. Then, the local file will be read when
readLocal is set to true and written when writeLocal is set to true. To do this using the Configuration Dialog, select
Keep Local Version, enter the file location or click on the folder icon to select a file, then select Read From
Local Path.

Output Files

To use a persistent output file, after dragging it onto the canvas, it is necessary to edit the configuration (Ctrl+E). Notice
that the Configuration Dialog for the output file is the same as that of the input file except that an option to Always
Create New Reference exists. Selecting this new option will cause a new file to be created and added to the
persistent store each time the workflow is executed. The new file does not get a name or tag, so it can be difficult to
identify the newly created file.

If you prefer to have a new version of the file created each time the workflow is changed rather than executed, you
should choose either of the other options (Create New Reference, or Use Existing Reference). The
other two options and the option to read from or write to a local path are used in the same manner as with the input
file. However, when the input file is read from a local path, it is not also read from the persistent store. In contrast,

94 Chapter 4. Intermediate Concepts and VisTrails Packages

VisTrails Documentation, Release 2.0.3

when an output file is written to a local path, it is also written to the selected entry in the persistent store.

Intermediate Files

An intermediate file is the same as the output file except that its contents can be used in further calculations. Thus,
lengthy computations upstream of the intermediate file will only be recalculated when the upstream workflow changes,
but will not need to be rerun when only the downstream workflow changes. Intermediate files by default are set to
always create a new reference. Since these files do not need to be manually annotated or named, configuration is
optional, but is the same as the output file configuration.

4.5.2 Using the Output of One Workflow as Input for Another

You need to configure the persistence modules using the module’s configuration dialog. After adding a PersistentOut-
putFile to the workflow, click on the triangle in the upper-right corner of the PersistentOutputFile, and select “Edit
Configuration” from the menu that appears. In this dialog, select “Create New Reference” and give the reference a
name (and any space-delimited tags). Upon running that workflow, the data will be written to the persistent store. In
the second workflow where you wish to use that file, add a PersistentInputFile and go to its configuration dialog in the
same manner as with the output file. In that dialog, select “Use Existing Reference” and select the data that you just
added in the first workflow from the list of files below. Now, when you run that workflow, it will grab the data from
the persistent store.

4.5.3 Managing Files in the Store

You may manage the files in the store by selecting Packages -> Persistence -> Manage Store. You
are then free to save files from the store to local files, or delete files from the store. However, please be aware that
files deleted from the store are not recoverable. Also, for versioned files, a specific version of a file can not be deleted
without deleting all versions of that file. To delete all versions of the file, select the root version and press Delete.

4.5.4 Examples

4.5. Persistence in VisTrails 95

VisTrails Documentation, Release 2.0.3

Try it Now!

Base Workflow
1. Drag the following modules to the canvas and connect them in the order in which they

are named: HTTPFile, vtkUnstructuredGridReader, vtkDataSetMapper, vtkActor,
vtkRenderer, VTKRenderOffscreen. Refer to Figure Example 1.1 to ensure connections are cor-
rect.

2. Select the HTTPFile module and set the url to:
http://www.vistrails.org/download/download.php?type=DATA&id=spx.vtk

3. (Optional) Select the vtkRenderer module and select SetBackgroungWidget from the Module
Information’s Inputs tab. Select the background color of your choice.

Persistent Output
4. Switch to the History view and tag the current version as “Base Workflow”. Then, switch back to the

pipeline view.
5. Enable the persistence package.
6. Drag the PersistentOutputFile module to the canvas and connect the output from

VTKRenderOffscreen to its value port. See Figure Example 1.2.
7. With the PersistentOutputFile module selected, press Ctrl-E to edit the module configuration.
8. Select Create New Reference, name it “persistence1_1”, and give it a “Persistent Output” tag.

Select Save.
9. Execute the workflow.

Persistent Input
10. Switch to the History view again and tag the current version as “Persistent Output”. Then, select the root

of the version tree and go back to the pipeline view.
11. Drag the PersistentInputFile and ImageViewerCellmodules to the canvas and connect them.

See Figure Example 1.3.
12. Edit the configuration of the PersitentInputFile. Select “Use Existing Reference” and select the

file named “persistence1_1” with the “Persistent Output” tag. Select Save. See Figure Example 1.4.
13. Execute the workflow. An image should be displayed in the VisTrails spreadsheet.

Persistent Intermediate
14. Switch to the History view and tag the version with “Persistent Input”, then select the “Base Workflow”

version and switch to the pipeline view again.
15. Drag the PersistentIntermediateFile and ImageViewerCell modules to the canvas and

connect them as shown in Figure Example 1.5.
16. Execute the workflow.
17. In the History view, tag the version with “Persistent Intermediate”. See Figure Example 1.6.

Experimentation
You can now change the background color in the “Persistent Output” version and execute the pipeline. The
changes should show up when you execute the pipeline of the “Persistent Input” version. You can also change
the background color in the “Persistent Intermediate” version, but this example merely demonstrates how to use
the module. Performance increase will not be seen here due to the lack of lengthy computations.

96 Chapter 4. Intermediate Concepts and VisTrails Packages

http://www.vistrails.org/download/download.php?type=DATA&id=spx.vtk

VisTrails Documentation, Release 2.0.3

Example 1.1 - Base Workflow - An example pipeline
without persistence.

Example 1.2 - Persistent Output File

Figure 4.24: Example 1.3 - Persistent Input File

4.6 VisTrails Server Setup

• lets assume that everything is going to be put in the /server dir:

4.6. VisTrails Server Setup 97

VisTrails Documentation, Release 2.0.3

Figure 4.25: Example 1.4 - Selecting an existing reference

98 Chapter 4. Intermediate Concepts and VisTrails Packages

VisTrails Documentation, Release 2.0.3

Figure 4.26: Example 1.5 - Persistent Intermediate File

Figure 4.27: Example 1.6 - The History Tree

4.6. VisTrails Server Setup 99

VisTrails Documentation, Release 2.0.3

$ cd /server
$ mkdir vistrails

• put VisTrails Source in vistrails/ folder:

$ cd vistrails
$ git clone git://vistrails.org:vistrails.git git # or just download the latest release or nightly build

• make a logs dir for the server:

$ mkdir logs

• if you are running the server without crowdLabs or as a remote server, you need to create a media directory with
the following structure:

/path/to/media_dir/
wf_execution/
graphs/

workflows/
vistrails/

medleys/
images/

You can run python scripts/create_server_media_dir_structure.py
/path/to/media_dir to create the directory structure automatically.

• Determine how you will start the vistrails server. You have a choice of using Xvfb or not. If you use it,
/server/vistrails/git/scripts/start_vistrails_xvfb.sh is what you will use, otherwise, use start_vistrails.sh

Using Xvfb is slower and not recommended if your workflows will make use of volume rendering or other graphics-
card intensive techniques.

4.6.1 Using Xvfb

• edit /server/vistrails/git/scripts/start_vistrails_xvfb.sh file and make sure it is consistent with your system setup:

LOG_DIR=/server/vistrails/logs
Xvfb_CMD=/usr/bin/Xvfb
VIRTUAL_DISPLAY=":6"
VISTRAILS_DIR=/server/vistrails/git/vistrails
ADDRESS="<your_server.com>"
PORT="8081" #the port where the server will listen for requests
CONF_FILE="server.cfg"
NUMBER_OF_OTHER_VISTRAILS_INSTANCES="1"
MULTI_OPTION="-M" #execute the main instance multithreaded

• The setup above will execute 2 instances of the server. You can add more instances by changing the variable
NUMBER_OF_OTHER_VISTRAILS_INSTANCES. When using multiple instances, the ports and virtual dis-
plays will be used incrementally, so if the main instance is using port 8081 and virtual display :6, the next
instance will use port 8082 and virtual display :7, and so on.

4.6.2 Connecting to X server directly

• If you decide no to use Xvfb, edit /server/vistrails/git/scripts/start_vistrails.sh file and make sure it is consistent
with your system setup:

100 Chapter 4. Intermediate Concepts and VisTrails Packages

VisTrails Documentation, Release 2.0.3

LOG_DIR=/server/vistrails/logs
VISTRAILS_DIR=/server/vistrails/git/vistrails
ADDRESS="<your_server.com>"
PORT="8081" #the port where the server will listen for requests
CONF_FILE="server.cfg"
NUMBER_OF_OTHER_VISTRAILS_INSTANCES="2"
MULTI_OPTION="-M" #execute the main instance multithreaded

• The setup above will execute 3 instances of the server. You can add or remove more instances by changing the
variable NUMBER_OF_OTHER_VISTRAILS_INSTANCES. When using multiple instances, the ports will be
used incrementally, so if the main instance is using port 8081, the next instance will use port 8082, and so on.

4.6.3 Basic Configuration

• If the vistrails server will receive requests from the outside world and if you are using a firewall, make sure the
ports used by the vistrails server are open and accessible.

• create a file called server.cfg in /server/vistrails/git/vistrails/ as follows:

[access]
permitted_addresses = localhost, 127.0.0.1, <crowdlabs-server-address>

[media]
media_dir=/server/crowdlabs/site_media/media

[database]
host = <vistrail database address>
read_user = <read user>
read_password = <read password>
write_user = <write user>
write_password = <write user password>

[script]
script_file=/server/vistrails/git/scripts/start_vistrails.sh
virtual_display=<virtual display number>

• change permitted_addresses variable in to include the address of the machine running of the crowdLabs server
(or other machines you want to be able to connect to the server):

[access]
permitted_addresses = localhost, 127.0.0.1, <crowdlabs-server-address>

• Add the password for the full permission mysql user created in VisTrails Database Setup:

write_user = <write user>
write_password = <write user password>

• Configure the full path to the script file and if you are using Xvfb, also specify the virtual display of the main
instance:

[script]
script_file=/server/vistrails/git/scripts/start_vistrails.sh
virtual_display=0 #not using any display

• run vistrails in server mode:

$ cd /server/vistrails/git/scripts
If you are running Xvfb:

4.6. VisTrails Server Setup 101

VisTrails Documentation, Release 2.0.3

$./start_vistrails_xvfb.sh
Or if you are connecting to X server directly:
$./start_vistrails.sh

4.7 Embedding VisTrails Files Via Latex

The VisTrails Latex extension allows you to embed the result from a VisTrails file into a Latex document. Images
to be included in the Latex document will be generated through VisTrails and can be linked to the VisTrails file and
version from which it was generated. In other words, Latex calls VisTrails to generate an image for a resulting PDF
document. The resulting image can be set up so, when clicked, the generated VisTrails file will be opened in VisTrails.

4.7.1 Latex Setup and Commands

This section contains instructions for setting up Latex files to use VisTrails. For a complete example of this setup, you
may also refer to example.tex in VisTrails’ extensions/latex directory.

To use the Latex extension, copy vistrails.sty and includevistrail.py from the extensions/latex directory to the same
directory as your .tex files. Then, add the following line to the beginning of the latex file:

\usepackage{vistrails}

By default, VisTrails will be executed at www.vistrails.org and the images downloaded to your hard drive. This allows
any user that downlods your paper to execute the workflows on the server.

Local Setup

If you want to run a local copy of VisTrails instead, add the following path to your python file or executable:

\renewcommand{\vistrailspath}{/path/to/vistrails.py}

Depending on how you are running VisTrails and on which OS you are running, the vistrailspath should be con-
figured appropriately. Please check head.tex in VisTrails’ extensions/latex directory for detailed instructions on the
configuration for the different platforms.

By default, images are set up to link to their corresponding vistrail. This means that on a local setup, clicking on an
image will open the local .vt file or will try to connect to the database if you loaded the vistrail from a database. This
may not work when other users click on the images on different machines. However, if you are using your own web
server, additional setup is required (see Setup For Use With Files on MediaWiki or a Web Server). Otherwise, to setup
the images without links (not clickable), add:

\renewcommand{\vistrailsdownload}{}

Finally, if you are running VisTrails from source and don’t have python on your path, use this to set the python
interpreter:

\renewcommand{\vistrailspythonpath}{/path/to/python/executable}

Note: If you set the vistrailspythonpath to an invalid path VisTrails will use cached files if they exist.

Setup For Use With Files on MediaWiki or a Web Server

Many VisTrails files and/or data are stored in a database that readers of a pdf document might not have access to. If the
files are also accessible through the web, the following instructions explain setup that will allow readers to download
the VisTrail or workflow through MediaWiki or a web server.

102 Chapter 4. Intermediate Concepts and VisTrails Packages

VisTrails Documentation, Release 2.0.3

MediaWiki

To setup your MediaWiki for use with VisTrails:

• In your wiki/extensions folder, create a config.php file based on the config.php.sample file located in VisTrails’
extensions/http folder.

• Copy download.php, functions.php, and vistrailsExtension.php from the extensions/mediawiki folder to your
wiki/extentions folder and update these files according to your needs.

• Configure your .tex files with:

\renewcommand{\vistrailsdownload}{http://yourwebserver.somethingelse/download.php}

Web Server

To configure VisTrails to run on your web server:

• Create a config.php file based on the config.php.sample file located in VisTrails’ extensions/http folder.

• Copy functions.php and downloads.php from the extensions/mediawiki folder and update them according to
your needs.

• Depending on the functionality you want to make available, copy any or all of the following files:

– run_vistrails.php - will execute workflows and return images and pdf files

– get_db_vistrail_list.php - will return a list of VisTrails available in the database

– get_vt_xml.php - will return a VisTrail in xml format

– get_wf_pdf.php - will return a workflow graph in pdf format

– get_wf_xml.php - will return a workflow in xml format

• Configure your .tex files with:

\renewcommand{\vistrailspath}{http://yourwebserver.somethingelse/run_vistrails.php}

\renewcommand{\vistrailsdownload}{http://yourwebserver.somethingelse/download.php}

4.7.2 Including VisTrails Results in Latex

There are two ways of including VisTrails’ objects in a Latex file. Usually you start with a workflow in a vistrail (the
vistrail can be loaded from a file or from a database):

• In History view, select the version node representing the workflow.

• In Pipeline view, ensure that the workflow is being displayed.

Now you can select Publish→ To Paper... to launch a dialog with embedding options (see Figure Embedding
Options).

Then perform the following steps:

• Select the type of object that you would like to display. The choices are: Workflow Results, Workflow Graph,
and History Tree Graph.

• Make sure that Latex is displayed in the In: combobox.

• You should then choose from a number of “Embed” and “Download” options which will be explained in the
tables below.

• Press the “Copy to Clipboard” button

• Paste clipboard contents into you Latex document

4.7. Embedding VisTrails Files Via Latex 103

VisTrails Documentation, Release 2.0.3

Figure 4.28: Embedding Options

104 Chapter 4. Intermediate Concepts and VisTrails Packages

VisTrails Documentation, Release 2.0.3

• Run pdflatex with the -shell-escape option: pdflatex -shell-escape example.tex.

Note on using local VisTrails files: Relative or absolute filenames can be used in the .tex file, but absolute filenames
are used in the pdf. Thus, if the absolute location of the file has changed, the pdf will need to be regenerated even if
the relative location of the file has not changed. Also, the VisTrails Embed function assumes the .vt file is in the same
directory as the .tex file. You will need to change this to an absolute filename if it is not.

Table 4.1: Configuration Options

Option Latex Flag Description
Workflow Results version=<...> Show the results of the specified version.

Workflow Graph version=<...> Show the workflow instead of the results.
showworkflow

History Tree Graph showtree Show the version tree instead of the results.

Table 4.2: Embed Options

Option Latex Flag Description
As PDF pdf Download images as pdf files. If this is not checked,

a png image is used.

Smart Tag tag=<...> Allows you to include a version’s tag. If a tag is pro-
vided, version can be omitted and buildalways is im-
plicit.

Cache Images buildalways (do not
include for caching)

When caching desired, the buildalways flag should
not be included. If it is included, VisTrails will be
called regardless of whether or not it has been called
for the same host, db, version, port and vt_id.

Include .vtl getvtl Causes the .vtl file to be downloaded when compiling
the pdf file. This is useful when you want to package
the workflows together with your paper for archiving.

Table 4.3: Download Options

Option Latex Flag Description
Include Workflow embedworkflow When clicking on the image in the pdf, download the

workflow only.

Execute Workflow execute Will cause the workflow to be executed when it is
opened.

Include Full Tree includefulltree When clicking on the image, download the complete
VisTrail.

Show Spreadsheet
Only

showspreadsheetonly When opening the workflow it will initially only show
the spreadsheet. The execute option is implicit.

Example

The following is an example command for including the execution results the workflow aliases from exam-
ples/head.vt in a pdf and caching the images. When clicking on the images, the user will start VisTrails showing
only the spreadsheet:

4.7. Embedding VisTrails Files Via Latex 105

VisTrails Documentation, Release 2.0.3

\vistrails[filename=head.vt,

version=15,

pdf,

execute,

showspreadsheetonly,

]{width=0.45\linewidth} %Options you would give to the \includegraphics{}
command.

See head.tex in the extensions/latex directory for a complete example of usage.

Additional Notes

After running at least once, VisTrails will cache the images and latex instructions. The latex code will be in the
“cached” folder and the images in vistrails_images.

Vistrails will create in the current directory a directory called vistrails_images/filename_version_options with the
png/pdf files generated by the spreadsheet.

4.7.3 Including crowdlabs.org workflow results in Latex

It is also possible to embed results of workflows that are in www.crowdlabs.org.

To use the crowdLabs extension, copy crowdlabs.sty and includecrowdlabs.py from the extensions/latex directory to
the same directory as your .tex files. Then, add the following line to the beginning of the latex file:

\usepackage{crowdlabs}

The vistrail you would like to use must be already in crowdLabs. Visit the page of the workflow, for example, go to:

http://www.crowdlabs.org/vistrails/workflows/details/1046/

And click on the Embed this Workflow tab located below the image. Copy the snippet in the In LaTex box:

\vistrail[wfid=1046,

buildalways=false]{width=4cm}

And paste it in the latex file.

Currently crowdLabs supports only embedding workflow results in the png format. Do not use this extension together
with the vistrails extension above.

106 Chapter 4. Intermediate Concepts and VisTrails Packages

http://www.crowdlabs.org/vistrails/workflows/details/1046/

Part II

Developer’s Guide

107

CHAPTER

FIVE

WRITING VISTRAILS PACKAGES

5.1 Introduction

VisTrails provides a plugin infrastructure to integrate user-defined functions and libraries. Specifically, users can
incorporate their own visualization and simulation code into pipelines by defining custom modules (or wrappers).
These modules are bundled in what we call packages. A vistrails package is simply a collection of Python classes
stored in one or more files, respecting some conventions that will be described shortly. Each of these classes will
represent a new module. In this chapter, we will build progressively more complicated modules. Note that even
though each section introduces a specific large feature of the VisTrails package mechanism, new small features are
highlighted and explained as we go along. Because of this, we recommend at least skimming through the entire chapter
at least once.

5.2 Who Should Read This Chapter?

This chapter is written for developers who wish to extend VisTrails with customized modules, tailored for their specific
needs. It is assumed that you have experience writing code in the Python programming language. Teaching the syntax
of Python is beyond the scope of this manual; for experienced programmers who would like a compact introduction to
Python, we recommend the book Python in a Nutshell by Alex Martelli (published by O’Reilly).

However, if you do not yet know Python but are familiar with another object-oriented language such as Java or C#, you
should be able to get the gist of these examples from looking at the code and by reading our line-by-line commentaries.

5.3 A Simple Example

Here is a simplified example of a very simple user-defined module:

1 class Divide(Module):
2 def compute(self):
3 arg1 = self.getInputFromPort("arg1")
4 arg2 = self.getInputFromPort("arg2")
5 if arg2 == 0.0:
6 raise ModuleError(self, "Division by zero")
7 self.setResult("result", arg1 / arg2)
8

9 _input_ports = [(’arg1’, ’(edu.utah.sci.vistrails.basic:Float)’,\
10 {"labels": str(["dividend"])}),\
11 (’arg2’, ’(edu.utah.sci.vistrails.basic:Float)’,\
12 {"labels": str(["divisor"])})]

109

VisTrails Documentation, Release 2.0.3

13 _output_ports = [(’result’, ’(edu.utah.sci.vistrails.basic:Float)’,\
14 {"labels": str(["quotient"])})]
15

16 _modules = [Divide]
17 #old syntax
18 #registry.addModule(Divide)
19 #registry.addInputPort(Divide, "arg1", (basic.Float, ’dividend’))
20 #registry.addInputPort(Divide, "arg2", (basic.Float, ’divisor’))
21 #registry.addOutputPort(Divide, "result", (basic.Float, ’quotient’))

New VisTrails modules must subclass from Module, the base class that defines basic functionality. The only required
override is the compute() method, which performs the actual module computation. Input and output is specified
through ports, which currently have to be explicitly registered with VisTrails. However, this is straightforward, and
done through method calls to the module registry. An example of a (slightly) more complicated module follows:

1 import core.modules.module_registry
2 from core.modules.vistrails_module import Module, ModuleError
3

4 version = "0.9.0"
5 name = "PythonCalc"
6 identifier = "edu.utah.sci.vistrails.pythoncalc"
7

8 class PythonCalc(Module):
9 """PythonCalc is a module that performs simple arithmetic operations on its inputs."""

10

11 def compute(self):
12 v1 = self.getInputFromPort("value1")
13 v2 = self.getInputFromPort("value2")
14 result = self.op(v1, v2)
15 self.setResult("value", result)
16

17 def op(self, v1, v2):
18 op = self.getInputFromPort("op")
19 if op == ’+’: return v1 + v2
20 elif op == ’-’: return v1 - v2
21 elif op == ’*’: return v1 * v2
22 elif op == ’/’: return v1 / v2
23 else: raise ModuleError(self, "unrecognized operation: ’%s’" % op)
24

25 ###
26

27 def initialize(*args, **keywords):
28

29 # We’ll first create a local alias for the module registry so that
30 # we can refer to it in a shorter way.
31 reg = core.modules.module_registry.registry
32

33 reg.add_module(PythonCalc)
34 reg.add_input_port(PythonCalc, "value1",
35 (core.modules.basic_modules.Float, ’the first argument’))
36 reg.add_input_port(PythonCalc, "value2",
37 (core.modules.basic_modules.Float, ’the second argument’))
38 reg.add_input_port(PythonCalc, "op",
39 (core.modules.basic_modules.String, ’the operation’))
40 reg.add_output_port(PythonCalc, "value",
41 (core.modules.basic_modules.Float, ’the result’))

Copyright (C) 2006-2011, University of Utah. ## All rights reserved. ## Contact: contact@vistrails.org ##

110 Chapter 5. Writing VisTrails Packages

mailto:contact@vistrails.org

VisTrails Documentation, Release 2.0.3

This file is part of VisTrails. ## ## “Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met: ## ## - Redistributions of
source code must retain the above copyright notice, ## this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright ## notice, this list of conditions
and the following disclaimer in the ## documentation and/or other materials provided with the distribution.
- Neither the name of the University of Utah nor the names of its ## contributors may be used to en-
dorse or promote products derived from ## this software without specific prior written permission. ## ##
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS”
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, ## THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR ## PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR ## CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, ## EXEMPLARY, OR CONSEQUEN-
TIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, ## PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; ## OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, ## WHETHER IN CONTRACT, STRICT LIABIL-
ITY, OR TORT (INCLUDING NEGLIGENCE OR ## OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ## ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.”
“”“This
package implements a very simple VisTrails module called PythonCalc. This is intended as a simple exam-
ple that can be referred to by users to create their own packages and modules later.

If you’re interested in developing new modules for VisTrails, you should also consult the documentation in
core/modules/vistrails_module.py. “”“

import core.modules import core.modules.module_registry from core.modules.vistrails_module import Module,
ModuleError

PythonCalc # # A VisTrails package is simply a Python class that subclasses from # Module. For this class
to be executable, it must define a method # compute(self) that will perform the appropriate computations and
set # the results. # # Extra helper methods can be defined, as usual. In this case, we’re # using a helper method
op(self, v1, v2) that performs the right # operations.

class PythonCalc(Module): “”“PythonCalc is a module that performs simple arithmetic operations on its in-
puts.”“”

This constructor is strictly unnecessary. However, some modules # might want to initialize per-object
data. When implementing your # own constructor, remember that it must not take any extra # parameters.
def __init__(self):

Module.__init__(self)

This is the method you should implement in every module that # will be executed directly. VisTrails
does not use the return # value of this method. def compute(self):

getInputFromPort is a method defined in Module that returns # the value stored at an in-
put port. If there’s no value # stored on the port, the method will return None. v1 =
self.getInputFromPort(“value1”) v2 = self.getInputFromPort(“value2”)

You should call setResult to store the appropriate results # on the ports. In this case, we are only
storing a # floating-point result, so we can use the number types # directly. For more complicated
data, you should # return an instance of a VisTrails Module. This will be made # clear in further
examples that use these more complicated data. self.setResult(“value”, self.op(v1, v2))

def op(self, v1, v2): op = self.getInputFromPort(“op”) if op == ‘+’:

return v1 + v2

elif op == ‘-‘: return v1 - v2

elif op == ‘*’: return v1 * v2

5.3. A Simple Example 111

VisTrails Documentation, Release 2.0.3

elif op == ‘/’: return v1 / v2

If a module wants to report an error to VisTrails, it should raise # ModuleError with a descriptive
error. This allows the interpreter # to capture the error and report it to the caller of the evaluation #
function. raise ModuleError(self, “unrecognized operation: ‘%s”’ % op)

the function initialize is called for each package, after all # packages have been loaded. It it used to register
the module with # the VisTrails runtime.

def initialize(*args, **keywords):

We’ll first create a local alias for the module_registry so that # we can refer to it in a shorter way.
reg = core.modules.module_registry

VisTrails cannot currently automatically detect your derived # classes, and the ports that they
support as input and # output. Because of this, you as a module developer need to let # Vis-
Trails know that you created a new module. This is done by calling # function addModule:
reg.addModule(PythonCalc)

In a similar way, you need to report the ports the module wants # to make available. This is
done by calling addInputPort and # addOutputPort appropriately. These calls only show how to
set up # one-parameter ports. We’ll see in later tutorials how to set up # multiple-parameter plots.
reg.addInputPort(PythonCalc, “value1”,

(core.modules.basic_modules.Float, ‘the first argument’))

reg.addInputPort(PythonCalc, “value2”, (core.modules.basic_modules.Float, ‘the second argu-
ment’))

reg.addInputPort(PythonCalc, “op”, (core.modules.basic_modules.String, ‘the operation’))

reg.addOutputPort(PythonCalc, “value”, (core.modules.basic_modules.Float, ‘the result’))

To try this out in VisTrails, save the file above in the .vistrails/userpackages subdirectory of your home
directory, with the filename pythoncalc.py. Then, click on the Edit menu (or the VisTrails menu on Mac
OS X), select the Preferences option and select the Module Packages tab. A dialog similar to what is shown
in Figure All available packages... should appear. Select the pythonCalc package, then click on Enable. This
should move the package to the Enabled packages list. Close the dialog. The package and module should now
be visible in the VisTrails builder.

Now create a workflow similar to what is shown in Figure A simple workflow that uses PythonCalc.... When executed,
this workflow will print the following on your terminal:

7.0

Let’s now examine how this works. The first two lines simply import required components. The next three lines
give VisTrails meta-information about the package. Version is simply information about the package version. This
might be tied to the underlying library or not. The only recommended guideline is that compatibility is not broken
across minor releases, but this is not enforced in any way. Name is a human-readable name for the package.

The most important piece of metadata, however, is the package identifier, stored in the variable called identifier.
This is a string that must be globally unique across all packages, not only in your system, but in any possible system.
We recommend using an identifier similar to Java’s package identifiers. These look essentially like regular DNS names,
but the word order is reversed. This makes sorting on the strings a lot more meaningful. You should generally go for
institution.project.packagename for a package related to a certain project from some institution, and
institution.creatorname for a personally developed package. If you are wrapping third-party functionality,
do not use their institution’s DNS, use your own. The rationale for this is that the third party itself might decide to
create their own VisTrails package, and you do not want to introduce conflicts.

Line 8 is where we actually start defining a new module. Every VisTrails module corresponds to a Python class that
ultimately derives from the Module class, which is defined in core.modules.vistrails_module. Each mod-
ule must implement a compute method that takes no extra parameters, such as on Line 11. This method represents

112 Chapter 5. Writing VisTrails Packages

VisTrails Documentation, Release 2.0.3

Figure 5.1: All available packages can be enabled and disabled with the VisTrails preferences dialog.

Figure 5.2: A simple workflow that uses PythonCalc, a user-defined module.

5.3. A Simple Example 113

VisTrails Documentation, Release 2.0.3

the actual computation that happens in a module. This computation typically involves getting the necessary input and
generating the output. We will now see how that works.

Line 12 shows how to extract input from a port. Specifically, we’re getting the values passed to input ports value1
and value2. We then perform some operation with these values, and need to report the output on an output port, so
that it is available for downstream modules. This is done on Line 15, where the result is set to port value.

Let us now look more carefully at the remainder of the class definition. Notice that developers are allowed to define
extra helper methods, for example the op method on Line 17. These helper methods can naturally use the ports
API. The other important feature of the op method is error checking. PythonCalc requires a string that represents
the operation to be performed with the two numbers. If the string is invalid, it signals an error by simply raising a
Python exception, ModuleError, that is provided in core.modules.vistrails_module. This exception
expects two parameters: the module that generated the exception (typically self) and a string describing the error.
In the Pipeline view, this error message is displayed in the tooltip that appears when the user “mouses over” the
PythonCalc module icon.

That is all that it takes in terms of module behavior. The rest of the code is meant to interact with VisTrails, and
let the system know about the modules and ports being exposed. To do that, you must provide a function called
initialize in the main body of the package file (the function starting on Line 27). The first thing is usually
to register the module itself, such as on Line 33. Then, we need to tell VisTrails about the input and output ports
we want to expose. Input ports are set with the add_input_port method in the registry, and output ports with
add_output_port. These calls take three parameters. The first parameter is the module you’re adding a new port
to. The second one is simply the name of the port, and the third one is a description of the parameter. In most cases,
this is just a pair, where the first element is a VisTrails module representing the module type being passed, and the
second element is a string describing it. Notice that the types being used are VisTrails modules (Line 35), and not
Python types.

That is it — you have successfully created a new package and module. From now on, we will look at more complicated
examples, and more advanced features of the package mechanism.

5.4 Creating Reloadable Packages

When creating or making changes to packages, it is often desirable to reload the package without having to restart Vis-
Trails. To create a package that is reloadable, users should create a new directory for the package in userpackages
directory. This new directory should have the same name as the package and should contain an __init__.py file
and an init.py file. The identified, name, version, configuration, and package_dependencies fields/methods should
be in __init__.py. An example of __init__.py from Vistrails’ pylab package follows.

1 identifier = ’edu.utah.sci.vistrails.matplotlib’
2 name = ’matplotlib’
3 version = ’0.9.0’
4

5 def package_dependencies():
6 import core.packagemanager
7 manager = core.packagemanager.get_package_manager()
8 if manager.has_package(’edu.utah.sci.vistrails.spreadsheet’):
9 return [’edu.utah.sci.vistrails.spreadsheet’]

10 else:
11 return []
12

13 def package_requirements():
14 import core.requirements
15 if not core.requirements.python_module_exists(’matplotlib’):
16 raise core.requirements.MissingRequirement(’matplotlib’)
17 if not core.requirements.python_module_exists(’pylab’):
18 raise core.requirements.MissingRequirement(’pylab’)

114 Chapter 5. Writing VisTrails Packages

VisTrails Documentation, Release 2.0.3

Imports (excluding core.configuration), other class definitions, and the initialize method should be in the init.py
file. Finally, to reload a package, select the reload button from the Preferences dialog’s Module Packages
tab.

Note

To make the previous example A Simple Example reloadable, rather than having just one file pythoncalc.py,
one would have a pythoncalc directory with the “version”, “name”, and “identifier” lines in __init__.py
and all other lines in init.py.

5.5 Wrapping Command-line tools

Many existing programs are readily available through a command-line interface. Also, many existing workflows are
first implemented through scripts, which work primarily with command-line tools. This section describes how to
wrap command-line applications so they can be used with VisTrails. We will use as a running example the afront
package, which wraps afront, a command-line program for generating 3D triangle meshes. 1 We will wrap the
basic functionality in three different modules: Afront, AfrontIso, and MeshQualityHistogram.

Each of these modules will be implemented by a Python class, and they will all invoke the afront binary. Afront
is the base execution module, and AfrontIso requires extra parameters on top of the original ones. Because of this,
we will implement AfrontIso as a subclass of Afront. MeshQualityHistogram, however, requires entirely
different parameters, and so will not be a subclass of Afront. A first attempt at writing this package might look
something like this:

1 from core.modules.vistrails_module import Module
2 ... # other import statements
3

4 name = "Afront"
5 version = "0.1.0"
6 identifier = "edu.utah.sci.vistrails.afront"
7

8 class Afront(Module):
9 def compute(self):

10 ... # invokes afront
11

12 class AfrontIso(Afront):
13 def compute(self):
14 ... # invokes afront with additional parameters
15

16 class MeshQualityHistogram(Module):
17 def compute(self):
18 ... # invokes afront with completely different parameters
19

20 def initialize():
21 ...

5.5.1 Class Mixins

While this approach is a good start, it does require significant duplication of effort. Each module must contain code
to invoke the afront binary and pass it some parameters. Since this functionality is required by all three modules,

1 This package is not included in binary distributions of VisTrails, but is available in the source code distribution. The stand-alone Afront
utility is available at http://afront.sourceforge.net.

5.5. Wrapping Command-line tools 115

http://afront.sourceforge.net

VisTrails Documentation, Release 2.0.3

we would like to put this code in a separate class called, say, AfrontRun, and let each of our modules inherit from
it. AfrontRun itself is not a module, and thus does not extend the Module class. So our three modules will inherit
from both AfrontRun and Module. Helper classes such as this are often referred to as mixin classes. 2 hi hello

1 from core.modules.vistrails_module import Module, ModuleError
2 from core.system import list2cmdline
3 import os
4

5 class AfrontRun(object):
6 _debug = False
7 def run(self, args):
8 cmd = [’afront’, ’-nogui’] + args
9 cmdline = list2cmdline(cmd)

10 if self._debug:
11 print cmdline
12 result = os.system(cmdline)
13 if result != 0:
14 raise ModuleError(self, "Execution failed")
15

16 class Afront(Module, AfrontRun):
17 ...
18

19 class MeshQualityHistogram(Module, AfrontRun):
20 ...

Now every module in the afront package has access to run(). The other new feature in this snippet is
list2cmdline, which turns a list of strings into a command line. It does this in a careful way (protecting ar-
guments with spaces, for example). Notice that we use a call to a shell (os.system()) to invoke afront. This is
frequently the easiest way to get third-party functionality into VisTrails.

5.5.2 Package Configuration

There are two obvious shortcomings in the way run() is implemented. First, the code assumes afront is available
in the system path, which might not be true in practice. Second, the debugging variable is inaccessible from the GUI,
where it could be very useful. VisTrails provides a way to configure a package through the VisTrails Preferences
dialog. It is very simple to provide your own configuration; just add a configuration attribute to your package,
as follows:

1 from core.configuration import ConfigurationObject
2 from core.modules.vistrails_module import Module, ModuleError
3 from core.system import list2cmdline
4 import os
5

6 configuration = ConfigurationObject(path=(None, str),
7 debug=False)
8

9 class AfrontRun(object):
10

11 def run(self, args):
12 if configuration.check(’path’): # there’s a set directory
13 afront_cmd = configuration.path + ’/afront’
14 else: # Assume afront is on path
15 afront_cmd = ’afront’
16 cmd = [afront_cmd, ’-nogui’] + args

2 Programmers who are more comfortable with single-inheritance languages like Java and C# may be unfamiliar with mixins. A mixin class
is similar to an interface in Java or C#, except that a mixin provides an implementation as well. Python’s support for multiple inheritance allows
subclasses to “import” functionality as needed from a mixin class, without artificially cluttering the base class’s interface.

116 Chapter 5. Writing VisTrails Packages

VisTrails Documentation, Release 2.0.3

17 cmdline = list2cmdline(cmd)
18 if configuration.debug:
19 print cmdline
20 ...
21 ...

Let us first look at how to specify configuration options. Named arguments passed to the ConfigurationObject
constructor (Lines 6 and 7) become attributes in the object. If the attribute has a default value, simply pass it to the
constructor. If the attribute should be unset by default, pass the constructor a pair whose first element is None and
second element is the type of the expected parameter. Currently, the valid types are bool, int, float and str.

To use the configuration object in your code, you can simply access the attributes (as on line 18). This is fine when
there is a default value set for the attribute. In the case of path, however, the absence of a value is encoded by a
tuple (None, str), so using it directly is inconvenient. That is where the check() method comes in (line 12). It
returns False if there is no set value, and returns the value otherwise.

Perhaps the biggest advantage of using a configuration object is that the values can be changed through a GUI, and
they are persistent across VisTrails sessions. To configure a package, open the Preferences menu (VisTrails→
Preferences on Mac OS X, or Edit→ Preferences on other platforms). Then, select the package you want
to configure by clicking on it (a package must be enabled to be configurable). If the Configure button is disabled,
it means the package does not have a configuration object. When you do click Configure, a dialog like the one in
Figure Configuration window for a package... will appear.

Figure 5.3: Configuration window for a package that provides a configuration object.

To edit the value for a particular field, double-click on it, and change the value. The values set in this dialog are
persistent across VisTrails sessions, being saved on a per-user basis.

5.5.3 Temporary File Management

Command-line programs typically generate files as outputs. On complicated pipelines, many files get created and
passed to other modules. To facilitate the use of files as communication objects, VisTrails provides basic infrastructure
for temporary file management. This way, package developers do not have to worry about file ownership and lifetimes.

To use this infrastructure, it must be possible to tell the program being called which filename to use as output. Vis-
Trails can accommodate some filename requirements (in particular, specific filename extensions might be important
in Windows environments, and these can be set), but it must be possible to direct the output to a certain filename.

We will use Afront’s compute() method to illustrate the feature.

1 ...
2 class Afront(Module, AfrontRun):
3

5.5. Wrapping Command-line tools 117

VisTrails Documentation, Release 2.0.3

4 def compute(self):
5 o = self.interpreter.filePool.create_file(suffix=’.m’)
6 args = []
7 if not self.hasInputFromPort("file"):
8 raise ModuleError(self, "Needs input file")
9 args.append(self.getInputFromPort("file").name)

10 if self.hasInputFromPort("rho"):
11 args.append("-rho")
12 args.append(str(self.getInputFromPort("rho")))
13 if self.hasInputFromPort("eta"):
14 args.append("-reduction")
15 args.append(str(self.getInputFromPort("eta")))
16 args.append("-outname")
17 args.append(o.name)
18 args.append("-tri")
19 self.run(args)
20 self.setResult("output", o)
21 ...

Line 5 shows how to create a temporary file during the execution of a pipeline. There are a few new things happening,
so let us look at them one at a time. Every module holds a reference to the current interpreter, the object responsible
for orchestrating the execution of a pipeline. This object has a filePool, which is what we will use to create a
pipeline, through the create_file method. This method takes optionally a named parameter suffix, which
forces the temporary file that will be created to have the right extension.

The file pool returns an instance of basic_modules.File, a module that is provided by the basic VisTrails
packages. There are two important things you should know about File. First, it has a name attribute that stores the
name of the file it represents. In this case, it is the name of the recently-created temporary file. This allows you to
safely use this file when calling a shell, as seen on Line 17. The other important feature is that it can be passed directly
to an output port, so that this file can be used by subsequent modules. This is shown on Line 20.

The above code also introduces the boolean function hasInputFromPort (see Lines 7, 10, and 13). This is a
simple error-checking function that verifies that the port has incoming data before the program attempts to read from
it. It is considered good practice to call this function before invoking getInputFromPort for any input port.

Accommodating badly-designed programs Even though it is considered bad design for a command-line program
not to allow the specification of an output filename, there do exist programs that lack this functionality. In this case, a
possible workaround is to execute the command-line tool, and move the generated file to the name given by VisTrails.

5.6 Interfacing with the VisTrails Menu

As we saw in Section Package Configuration, using the ConfigurationObject class is one way to “hook” your
custom package into the VisTrails GUI. However, this is not the only way to integrate your package with the user
interface. VisTrails also supports a mechanism whereby your package can add new options underneath the Packages
menu (Figure Packages can integrate their own commands...).

Figure 5.4: Packages can integrate their own commands into the main VisTrails menu.

118 Chapter 5. Writing VisTrails Packages

VisTrails Documentation, Release 2.0.3

This is done by adding a function named menu_items to your main package file. This function takes no parameters,
and should return a tuple of pairs for each new menu item to be added. The first element of each pair is the label of
the menu item as it should appear in the GUI. The second element of the pair is the name of the callback function to
be invoked when the user selects that menu item.

As an example, we include below the implementation of menu_items from the VisTrails Spreadsheet package:

1 def menu_items():
2 """menu_items() -> tuple of (str,function)
3 It returns a list of pairs containing text for the menu and a
4 callback function that will be executed when that menu item is selected.
5 """
6

7 def show_spreadsheet():
8 spreadsheetWindow.show()
9 lst = []

10 lst.append(("Show Spreadsheet", show_spreadsheet))
11 return tuple(lst)

Writing your own menu_items function is straightforward; simply use the provided example as a basis, and substi-
tute labels and callback functions as appropriate for your specific module. Although the Spreadsheet package currently
only implements one new menu option, you are free to add as many as you see fit; just append additional pairs to the
list (see Line 10 of the example code) before the function returns.

The Packages menu is organized hierarchically, as illustrated in Figure Packages can integrate their own com-
mands.... Each package that contributes a menu_items function will receive an entry in the Packages menu. The
actual menu items for each package will appear in a submenu.

5.7 Interpackage Dependencies

When creating more sophisticated VisTrails packages, you might want to create a new module that requires a module
from another package. For example, using modules from different packages as input ports, or even subclassing mod-
ules from other packages, require management of interpackage dependencies. VisTrails needs to know about these so
that packages can be initialized in the correct order. To specify these dependencies, you should add a function named
package_dependencies to your package. This function should return a list containing the identifier strings of
the required packages.

As an example of this function’s usage, let’s take a look at a (simplified) code segment from the VTK package, which
is included in the standard VisTrails distribution:

1 def package_dependencies():
2 return [’edu.utah.sci.vistrails.spreadsheet’]

As you can see, the package_dependencies function is quite straightforward; it simply returns a list of the
identifiers for the packages required by the VTK package. In this case, the list contains just a single string, as the
VisTrails Spreadsheet is the only package dependency for the VTK package.

The simple approach taken by the above code works well for the majority of cases, but in practice you may want to
add some error-checking to your package_dependencies function. This allows VisTrails to recover gracefully
in the unlikely event that the Spreadsheet package is missing. Below is the complete package_dependencies
function for the VTK package:

1 def package_dependencies():
2 import core.packagemanager
3 manager = core.packagemanager.get_package_manager()
4 if manager.has_package(’edu.utah.sci.vistrails.spreadsheet’):
5 return [’edu.utah.sci.vistrails.spreadsheet’]

5.7. Interpackage Dependencies 119

VisTrails Documentation, Release 2.0.3

6 else:
7 return []

The above code segment also demonstrates the VisTrails API function has_package which simply verifies that a
given package exists in the system.

5.8 Package Requirements

In Section Interpackage Dependencies, we saw how packages can depend on other packages. However, some packages
may also depend on the presence of external libraries (in the form of Python modules) or executable files in order to
run correctly.

5.8.1 Required Python Modules

To check for the presence of a required Python module, you should add a function named
package_requirements to your package. This function need not return any value; however it may raise excep-
tions or output error messages as necessary. Here is an example of the syntax of the package_requirements
function, taken from the VisTrails VTK package:

1 def package_requirements():
2 import core.requirements
3 if not core.requirements.python_module_exists(’vtk’):
4 raise core.requirements.MissingRequirement(’vtk’)
5 if not core.requirements.python_module_exists(’PyQt4’):
6 print ’PyQt4 is not available. There will be no interaction’,
7 print ’between VTK and the spreadsheet.’
8 import vtk

A key element of package_requirements is the use of the function python_module_exists (see Lines 3
and 5), which checks whether a given module has been installed in your local Python system.

5.8.2 Automatically Installing Python Modules

A more advanced method is to attempt to install a python module automatically using a system package manager. This
method currently works for apt- and rpm-based systems. By using core.bundles.py_import, you can attempt
to automatically install a system dependency, all you need to specify is the python module name and the name of
the package that contains it. The following example can be put in your init.py file, with the desired module and
package names changed:

1 from core.bundles import py_import
2 from core import debug
3 try:
4 pkg_dict = {’linux-ubuntu’: ’your-apt-package’,
5 ’linux-fedora’: ’your-deb-package’}
6 your-py-module = py_import(’your-py-module’, pkg_dict)
7 except Exception, e:
8 debug.critical("Exception: %s" % e)

Note that, if you use this method, you should not specify it in the package_requirements, because that would
block the install attempt.

120 Chapter 5. Writing VisTrails Packages

VisTrails Documentation, Release 2.0.3

5.8.3 Required Executables

As explained in Section Wrapping Command-line tools, a common motivation for writing new VisTrails mod-
ules is to wrap existing command-line tools. To this end, the VisTrails API provides a function called
executable_file_exists which checks for the presence of specific executables on the path.

Here is an example of its usage, taken from the initialize function of the ImageMagick package. This package
is included in the standard VisTrails distribution. The following code snippet checks to see if convert, a command-
line program associated with the ImageMagick suite of graphics utilities, is on the path.

1 import core.requirements
2

3 ...
4

5 if (not core.requirements.executable_file_exists(’convert’)):
6 raise core.requirements.MissingRequirement("ImageMagick suite")

Note that this function is not strictly required in order to wrap third party executables into a module. Using a
Configuration object (see Section Package Configuration) that lets the user specify the path to an executable
may be a cleaner solution.

For additional information or examples of any of the functions described above, please refer to the VisTrails source
code or contact the VisTrails development team.

5.9 Interaction with Caching

VisTrails provides a caching mechanism, in which portions of pipelines that are common across different executions
are automatically shared. However, some modules should not be shared. Caching control is therefore up to the package
developer. By default, caching is enabled. So a developer that doesn’t want caching to apply must make small changes
to the module. For example, look at the StandardOutput module:

from core.modules.vistrails_module import Module, newModule, \
NotCacheable, ModuleError

(...)
class StandardOutput(NotCacheable, Module):

"""StandardOutput is a VisTrails Module that simply prints the
value connected on its port to standard output. It is intended
mostly as a debugging device."""

def compute(self):
v = self.getInputFromPort("value")
print v

By subclassing from NotCacheable and Module (or one of its subclasses), we are telling VisTrails not to cache
this module, or anything downstream from it.

VisTrails also allows a more sophisticated decision on whether or not to use caching. To do that, a user simply
overrides the method is_cacheable to return the appropriate value (the default implementation returns True).
For example, in the teem <http://teem.sourceforge.net/> package, there’s a module that generates a scalar field with
random numbers. This is non-deterministic, so shouldn’t be cached. However, this module only generates non-
deterministic values in special occasions, depending on its input port values. To keep efficiency when caching is
possible, while still maintaining correctness, that module implements the following override:

class Unu1op(Unu):
(...)

def is_cacheable(self):

5.9. Interaction with Caching 121

VisTrails Documentation, Release 2.0.3

return not self.getInputFromPort(’op’) in [’rand’, ’nrand’]
(...)

Notice that the module explicitly uses inputs to decide whether it should be cached. This allows reasonably fine-
grained control over the process.

5.10 Customizing Modules and Ports

Here we will explore the options for registry initialization of modules and ports which was introduced in Section A
Simple Example. There is a new syntax for specifying modules in packages:

1 _modules = [MyModule1, (MyModule2, {’option_name’ : ’value’})]

Observe that _modules is assigned a list of modules to be registered, and module options can be provided as keyword
arguments by specifying a tuple (class, kwargs). Similarly, ports are defined by providing a list of tuples of the form
(portName, portSignature, optional=False, sort_key=-1). For example:

1 class MyModule(Module):
2 def compute(self):
3 pass
4

5 _input_ports = [(’firstInput’, String), (’secondInput’, Integer, True)]
6 _output_ports = [(’firstOutput’, String), (’secondOutput’, String)]

Notice that “String” and “Integer” were used for the portSignature instead of
edu.utah.sci.vistrails.basic:String and edu.utah.sci.vistrails.basic:Integer.
That is because the current package, edu.utah.sci.vistrails.basic is used by default.

Note

The old syntax (reg.add_module(...), reg.add_input_port(...), and reg.add_output_port(...)) is still supported.

5.10.1 Configuring Modules

Hierarchy and Visibility There are a few options that assist in the organization and display of modules: namespace,
abstract, and hide_descriptor. The namespace option can be used to define a hierarchy in the module
palette, which hierarchies can be nested through the use of the ‘|’ character. For example:

1 _modules = [MyModule1, (MyModule2, {’namespace’: ’MyNamespace’})]
2 or
3 _modules = [MyModule1, (MyModule2, {’namespace’: ’ParentNamespace|\
4 ChildNamespace’})]

The other options, abstract and hide_descriptor can be used to prevent modules from appearing in the
module palette. Abstract is for use with modules that should never be instantiated in the workflow and will not add
the item to the module palette. On the other hand, hide-descriptor will add the item to the palette, but hides it.
This will prevent users from adding the module to a pipeline, but allow code to add it programmatically. To use either
of these options, abstract or hide_descriptor, set it to True:

1 _modules = [AnotherModule, (InvisibleModule, {’abstract’: True})]
2 or
3 _modules = [AnotherModule, (InvisibleModule, {’hide-descriptor’: True})]

122 Chapter 5. Writing VisTrails Packages

VisTrails Documentation, Release 2.0.3

Defining Module Shapes and Colors VisTrails allows users to define custom colors and shapes to modules. This
must be done at module registration time, by using the moduleColor and moduleFringe options. For example:

_modules = [(Afront, {’moduleColor’ : (1.0, 0.0, 0.0),
’moduleFringe’ : [(0.0, 0.0),

(0.2, 0.0),
(0.2, 0.4),
(0.0, 0.4),
(0.0, 1.0)]})]

gives:

and

_modules = [(Afront, {’moduleColor’: (0.4,0.6,0.8),
’moduleFringe’ : [(0.0, 0.0),

(0.2, 0.0),
(0.0, 0.2),
(0.2, 0.4),
(0.0, 0.6),
(0.2, 0.8),
(0.0, 1.0)]})]

gives:

The moduleColor parameter must be a tuple of three floats between 0 and 1 that specify RGB colors for the module
background, while moduleFringe is a list of pairs of floats that specify points as they go around a side of the module
(the same one is used to go from the top-right corner to bottom-right corner, and from the bottom-left corner to the
top-left one. If this is not enough, let the developers know!)

Alternatively, you can use different fringes for the left and right borders:

_modules = [(Afront, {’moduleColor’: (1.0,0.8,0.6),
’moduleLeftFringe’ : [(0.0, 0.0),

(-0.2, 0.0),
(0.0, 1.0)],

’moduleRightFringe’ : [(0.0, 0.0),
(0.2, 1.0),
(0.0, 1.0)]})]

5.10. Customizing Modules and Ports 123

VisTrails Documentation, Release 2.0.3

5.10.2 Configuring Ports

Default Values and Labels In versions 1.4 and greater, package developers can add labels and default values for
parameters. To add this functionality, you need to use the defaults and labels keyword arguments and pass the values
as strings. For example,

1 class TestDefaults(Module):
2 _input_ports = [(’f1’,
3 # Warning: VisTrails pre v2.1 does not allow spaces in the string below
4 ’(edu.utah.sci.vistrails.basic:Float,edu.utah.sci.vistrails.basic:String)’,
5 {"defaults": str([1.23, "abc"]),
6 "labels": str(["temp", "name"])})]
7 _modules = [TestDefaults]

or in the older syntax,

1 def initialize():
2 reg = core.modules.module_registry.get_module_registry()
3 reg.add_module(TestDefaults)
4 reg.add_input_port(TestDefaults, "f1", [Float, String],
5 defaults=str([1.23, "abc"]),
6 labels=str(["temp", "name"]))

Making a Port Optional To add a port that is optional, set the optional flag to true:

1 _input_ports = [(’MyPort’, ’(edu.utah.sci.vistrails.basic:String)’,
2 {"optional": True})]
3

4 reg.add_input_port(MyModule, "MyPort",
5 "(edu.utah.sci.vistrails.basic:String)",
6 optional=True)

Multiple Inputs For compatibility reasons, we do need to allow multiple connections to an input port. However, most
package developers should never have to use this, and so we do our best to hide it. the default behavior for getting
inputs from a port, then, is to always return a single input.

If on your module you need multiple inputs connected to a single port, use the ‘forceGetInputListFromPort’ method.
It will return a list of all the data items coming through the port. The spreadsheet package uses this feature, so look
there for usage examples (vistrails/packages/spreadsheet/basic_widgets.py)

Port Types To define ports to be of types that are not imported into the package, pass and identifier string as the
portSignature:

1 <module_string> := <package_identifier>:[<namespace>|]<module_name>,
2 <port_signature> := (<module_string>*)

For example,

registry.add_input_port(MyModule, ’myInputPort’, \
’(edu.utah.sci.vistrails.basic:String)’)

124 Chapter 5. Writing VisTrails Packages

VisTrails Documentation, Release 2.0.3

or

_input_ports = [(’myInputPort’, ’(edu.utah.sci.vistrails.basic:String)’)]

Varying Output According to the Input There are a few ways to tackle this - each has it’s own benefits and pitfalls.
Firstly, module connections do respect class hierarchies as we’re familiar with in object oriented languages. For
instance, A module can output a Constant of which String, Float, Integer, etc are specifications. In this way, you
can have a subclass of something like MyData be passed out of the module and the connections will be established
regardless of the sub-type. This is a bit dangerous though. Modules downstream of such a class may not really know
how to operate on certain types derived from the super-class. Extreme care must be taken both when creating the
modules as well as connecting them to prevent things like this from happening.

A second method that is employed in several different packages is the idea of a container class. For instance, the
NumSciPy package uses a relatively generic container “Numpy Array” to encapsulate the data. Of course, these
encapsulating objects can store dictionaries that other modules can easily access and understand how to operate on.
Although this method is slightly more work, the benefits of a stricter typing of ports is beneficial - particularly upon
interfacing with other packages that may depend on strongly typed constants (for example).

Determining Whether or Not a Module is Attached to an Output Port The outputPorts dictionary of the base
Module stores connection information. Thus, you should be able to check

("myPortName" in self.outputPorts)

on the parent module to check if there are any downstream connections from the port “myPortName”. This might be
used, for example, to only set results for output ports that will be used. Note, however, that the caching algorithm
assumes that all outputs are set so adding a new connection to a previously unconnected output port will not work as
desired if that module is cached. For this reason, I would currently recommend making such a module not cacheable.
Another possibility is overriding the update() method to check the outputPorts and set the upToDate flag if they are
not equal. In a single, limited test, this seemed to work, but be warned that it is not fully tested. Here is an example:

1 class TestModule(Module):
2 _output_ports = [(’a1’, ’(edu.utah.sci.vistrails.basic:String)’),
3 (’a2’, ’(edu.utah.sci.vistrails.basic:String)’)]
4 def __init__(self):
5 Module.__init__(self)
6 self._cached_output_ports = set()
7

8 def update(self):
9 if len(set(self.outputPorts) - self._cached_output_ports) > 0:

10 self.upToDate = False
11 Module.update(self)
12

13 def compute(self):
14 if "a1" in self.outputPorts:
15 self.setResult("a1", "test")
16 if "a2" in self.outputPorts:
17 self.setResult("a2", "test2")
18 self._cached_output_ports = set(self.outputPorts)

5.11 Generating Modules Dynamically

When wrapping existing libraries or trying to generate modules in a more procedural manner, it is useful to dynamically
generate modules. In our work, we have created some shortcuts to make this easier. In addition, the list of modules
can also be based on the package configuration. Here is some example code:

__init__.py

5.11. Generating Modules Dynamically 125

VisTrails Documentation, Release 2.0.3

1 from core.configuration import ConfigurationObject
2

3 identifier = "edu.utah.sci.dakoop.auto_example"
4 version = "0.0.1"
5 name = "AutoExample"
6

7 configuration = ConfigurationObject(use_b=True)

init.py

The expand_ports and build_modules methods are functions to help the construction of the modules easier. The key
parts are the new_module call and setting the _modules variable.

1 from core.modules.vistrails_module import new_module, Module
2

3 identifier = "edu.utah.sci.dakoop.auto_example"
4

5 def expand_ports(port_list):
6 new_port_list = []
7 for port in port_list:
8 port_spec = port[1]
9 if type(port_spec) == str: # or unicode...

10 if port_spec.startswith(’(’):
11 port_spec = port_spec[1:]
12 if port_spec.endswith(’)’):
13 port_spec = port_spec[:-1]
14 new_spec_list = []
15 for spec in port_spec.split(’,’):
16 spec = spec.strip()
17 parts = spec.split(’:’, 1)
18 print ’parts:’, parts
19 namespace = None
20 if len(parts) > 1:
21 mod_parts = parts[1].rsplit(’|’, 1)
22 if len(mod_parts) > 1:
23 namespace, module_name = mod_parts
24 else:
25 module_name = parts[1]
26 if len(parts[0].split(’.’)) == 1:
27 id_str = ’edu.utah.sci.vistrails.’ + parts[0]
28 else:
29 id_str = parts[0]
30 else:
31 mod_parts = spec.rsplit(’|’, 1)
32 if len(mod_parts) > 1:
33 namespace, module_name = mod_parts
34 else:
35 module_name = spec
36 id_str = identifier
37 if namespace:
38 new_spec_list.append(id_str + ’:’ + module_name + \
39 ’:’ + namespace)
40 else:
41 new_spec_list.append(id_str + ’:’ + module_name)
42 port_spec = ’(’ + ’,’.join(new_spec_list) + ’)’
43 new_port_list.append((port[0], port_spec) + port[2:])
44 print new_port_list
45 return new_port_list
46

126 Chapter 5. Writing VisTrails Packages

VisTrails Documentation, Release 2.0.3

47 def build_modules(module_descs):
48 new_classes = {}
49 for m_name, m_dict in module_descs:
50 m_doc = m_dict.get("_doc", None)
51 m_inputs = m_dict.get("_inputs", [])
52 m_outputs = m_dict.get("_outputs", [])
53 if "_inputs" in m_dict:
54 del m_dict["_inputs"]
55 if "_outputs" in m_dict:
56 del m_dict["_outputs"]
57 if "_doc" in m_dict:
58 del m_dict["_doc"]
59 klass_dict = {}
60 if "_compute" in m_dict:
61 klass_dict["compute"] = m_dict["_compute"]
62 del m_dict["_compute"]
63 m_class = new_module(Module, m_name, klass_dict, m_doc)
64 m_class._input_ports = expand_ports(m_inputs)
65 m_class._output_ports = expand_ports(m_outputs)
66 new_classes[m_name] = (m_class, m_dict)
67 return new_classes.values()
68

69 def initialize():
70 global _modules
71 def a_compute(self):
72 a = self.getInputFromPort("a")
73 i = 0
74 if self.hasInputFromPort("i"):
75 i = self.getInputFromPort("i")
76 if a == "abc":
77 i += 100
78 self.setResult("b", i)
79

80 module_descs = [("ModuleA", {"_inputs": [("a", "basic:String")],
81 "_outputs": [("b", "basic:Integer")],
82 "_doc": "ModuleA documentation",
83 "_compute": a_compute,
84 "namespace": "Test"}),
85 ("ModuleB", {"_inputs": [("a", "Test|ModuleA")],
86 "_outputs": [("b", "Test|ModuleA")],
87 "_doc": "ModuleB documentation"})
88]
89

90 if configuration.use_b:
91 _modules = build_modules(module_descs)
92 else:
93 _modules = build_modules(module_descs[:1])
94

95 _modules = []

5.12 For System Administrators

Most users will want to put their custom packages in their

∼/.vistrails/userpackages

5.12. For System Administrators 127

VisTrails Documentation, Release 2.0.3

directory, as described in Section A Simple Example. This makes the package available to the current user only.
However, if you are a power user or a system administrator, you may wish to make certain packages available to all
users of a VisTrails installation. To do this, copy the appropriate package files and/or directories to the

vistrails/packages

directory of the VisTrails distribution. The packages will be made visible to users the next time they launch VisTrails.

128 Chapter 5. Writing VisTrails Packages

CHAPTER

SIX

COMMAND-LINE ARGUMENTS

6.1 Starting VisTrails via the Command Line

VisTrails supports a number of command-line arguments that let you modify certain attributes and behaviors of the
program. When invoking VisTrails from the command line, the arguments are placed after the “vistrails.py” filename.
For example,

python vistrails.py -n

suppresses the VisTrails splash screen. Table Command line arguments supported by VisTrails. contains a complete
list of the command line switches supported by vistrails. Each command line switch has both a short form and a long
form. The two forms are logically equivalent, and which one you use is a matter of personal preference. The short
form consists of a single minus sign “-” followed by a single letter. The longer form uses two minus signs “–” followed
by a descriptive word. For example, the above command to suppress the splash screen could have been written as:

python vistrails.py --nosplash

In addition to the explicit switches listed in Table Command line arguments supported by VisTrails., the VisTrails
command line also lets you indicate the filename of the vistrail you wish to open. For example, assuming your
“examples” directory is one level above your current working directory, this is how you would tell VisTrails to load
the “lung.vt” example at startup:

python vistrails.py ../examples/lung.vt

Moreover, if you want VisTrails to start on a specific version of the pipeline within the vistrail, you can indicate that
version’s tag name on the command line. The filename and version tag should be separated by a colon. For example,
to start VisTrails with the colormap version of the “lung.vt” vistrail, use:

python vistrails.py ../examples/lung.vt:colormap

In the event that the version you want to open contains a space in its tag name, simply surround the entire “filename:tag”
pair in double quotes. For example:

python vistrails.py "../examples/lung.vt:Axial View"

You can also open up multiple vistrails at once by listing more than one vistrail file on the command line. This causes
the vistrails to be opened in separate tabs, just as if you had opened them via the GUI. For example:

python vistrails.py ../examples/lung.vt ../examples/head.vt

You can specify version tags in conjunction with multiple filenames. Here is an example of an elaborate command-line
invocation that opens two vistrails and sets each one to a specific version:

python vistrails.py "../examples/lung.vt:Axial View"
../examples/head.vt:bone

129

VisTrails Documentation, Release 2.0.3

Note:

As of this writing, the VisTrails development team is refactoring the implementation of many of the command-
line switches presented in Table Command line arguments supported by VisTrails.. As such, depending on your
version of VisTrails, the results you achieve may not match those described. For a list of known issues with the
command line switches, please refer to the VisTrails website.

Table 6.1: Command line arguments supported by VisTrails.

Short form Long form Description
-h −−help Print a help message and exit.
-S /path –startup=/path Set user configuration directory (default is

∼/.vistrails)
-? Print a help message and exit.
-v –version Print version information and exit.
-V num –verbose=num Set verboseness level (0–2, default=0, higher means

more verbose).
-b –noninteractive Run in non-interactive (batch) mode.
-n –nosplash Do not display splash screen on startup.
-q file –quickstart=file Start VisTrails using the specified static registry.
-c num –cache=num Enable/disable caching (0 to disable, nonzero to en-

able. Default is enabled).
-m num –movies=num Set automatic movie creation on spreadsheet (0 or 1,

default=1). Set this to zero to work around VTK bug
with offscreen renderer and OpenGL texture3D map-
pers.

-s –multiheads Display the Builder and Spreadsheet on different
screens (if available).

-x –maximized Maximize Builder and Spreadsheet windows at
startup.

-D –detachHistoryView Detach the history view from the builder window.
-l –nologger Disable logging.
-d –debugsignals Debug Qt Signals.
-a params –parameters=params Set workflow parameters (non-interactive mode

only).
-e dir –dumpcells=dir Set directory to dump spreadsheet cells before exiting

(non-interactive mode only).
-G –workflowgraph Save workflow graph in specified directory without

running the workflow (non-interactive mode only).
-U –evolutiongraph Save evolution graph in specified directory without

running any workflow (non-interactive mode only).
-p –pdf Dump images in pdf format (non-interactive mode

only).
-g –noSingleInstance Run VisTrails without the single instance restriction.
-t host –host=host Set hostname or IP address of database server.
-r port –port=port Set database port.
-f dbName –db=dbName Set database name.
-u userName –user=userName Set database username.

130 Chapter 6. Command-line Arguments

VisTrails Documentation, Release 2.0.3

6.2 Specifying a User Configuration Directory

In addition to the default .vistrails directory, VisTrails allows you to create and use additional configuration directories. First, you will need to create a new directory. This is done by running:
python vistrails.py -S /path_to_new_directory/new_directory_name.

This will both create a new directory containing default configuration files and directories, and launch VisTrails, which
will use the newly created files for configuration. The user is then free to add desired configurations to the new direc-
tory. Once a configuration directory exists, subsequent calls using the directory name (python vistrails.py
-S /path_to_directory/existing_directory) will launch VisTrails using the ‘existing_directory’ for
configuration and a new directory will not be created.

Note: If you would like to copy configuration directories, you must change the references in
copy_of_directory/startup.xml to point to the new directory instead of the original.

6.3 Passing Database Parameters on the Command Line

As discussed in Chapter Connecting to a Database, VisTrails can read and write vistrails stored in a relational database
as well as in a filesystem. VisTrails allows you to specify the name of the database server, the database name, the
port number, and the username on the command line. This potentially saves you the trouble of filling out the same
information on the database connection dialog. Note that, for security reasons, VisTrails does not allow you to include
a database password on the command line; you must still type your password into the database connection dialog when
VisTrails opens.

The last four rows of Table Command line arguments supported by VisTrails. show the command-line switches that
pertain to database connectivity. Be advised that these switches were designed primarily for use by VTL files (see Sec-
tion Using “Vistrail Link” Files) and as such, are not necessarily user-friendly. In particular, these switches are ignored
unless you also specify the vistrail ID and version name on the command line. For example, to open the contour ver-
sion of the the “spx” vistrail (whose ID is 5) from the database “vistrails” residing on the host “vistrails.sci.utah.edu”
with a username of “vistrails”:

python vistrails.py -t vistrails.sci.utah.edu -f vistrails -u
vistrails 5:contour

Once VisTrails opens, you will be prompted to enter the password. Upon successful authentication, the vistrail is
loaded from the database and opened to the pipeline corresponding to the specified version.

6.3.1 Using “Vistrail Link” Files

As discussed in Chapter Connecting to a Database, one of the advantages of storing your vistrails on a database is that
you can collaborate with others without having to pass around a .vt file or force all users to use a shared filesystem.
A disadvantage is that you need to remember the parameters with which to connect to the database. Using a “Vistrail
Link” (VTL) file reduces this inconvenience, and also eliminates the need to include the associated command-line
switches to connect to the database.

A VTL is a very small text (XML) file that contains the parameters required to load a vistrail from a database. VTL
files are intended for use with a VisTrails-enabled wiki. You can open a VTL either by saving the file and passing its
filename to the command line, or by configuring your web browser to do this for you. Here is the syntax for using a
VTL file on the command line:

python vistrails.py sample.vtl

Internally, VisTrails parses the VTL file and loads the vistrail from the database exactly as if you had included its full
parameter list on the command line.

6.2. Specifying a User Configuration Directory 131

VisTrails Documentation, Release 2.0.3

Note:

VTL is a relatively new feature of VisTrails, and as such is neither fully developed nor completedly documented.
Please contact the VisTrails development team with any bug reports and/or suggestions.

6.4 Running VisTrails in Batch Mode

Although VisTrails is primarily intended to be run as an interactive, graphical client application, it also supports non-
interactive use. VisTrails can thus be invoked programmatically, eg as part of a shell script. You can tell VisTrails to
start in non-interactive mode by using the “-b” or “–noninteractive” command line switch when launching vistrails. 1

Running VisTrails in non-interactive mode has little effect, however, without an additional command line argument
indicating which vistrail to load. Since we are running VisTrails as part of a batch process, it only makes sense to
execute vistrails whose output is something tangible, such as a file. A vistrail whose only output is an interactive
rendering in a VTKCell, for instance, would not be well-suited for running in batch mode.

Consider the following example. The “offscreen.vt” vistrail (included in the “examples” directory) has a variety of
output options, depending on which version you select in the History view (Figure The different versions of the
offscreen.vt vistrail...). The version tagged only vtk displays its output as an interactive VTK rendering. The
version tagged html creates a simple web page in the Spreadsheet. The offscreen version, however, outputs an
image file named “image.png”. Since its output (a file) can be easily accessed outside of VisTrails, this version is an
ideal candidate for running in batch mode. To try it, invoke VisTrails as shown, specifying both the name of the vistrail
file and the desired version:

python vistrails.py -b ../examples/offscreen.vt:offscreen

Figure 6.1: The different versions of the “offscreen.vt” vistrail offer various forms of output.

As you would expect, this command runs to completion without opening any windows. Instead, it silently loads the
requested pipeline, executes it, and closes. Assuming it ran correctly, this pipeline should have created a file named
“image.png” in the current directory. When you view this file, it should resemble the picture in Figure Running the
offscreen version of offscreeen.vt in batch mode....

1 The parameter “-b” stands for “batch.” In this chapter, we use the terms “batch mode” and “non-interactive mode” synonymously.

132 Chapter 6. Command-line Arguments

VisTrails Documentation, Release 2.0.3

Figure 6.2: Running the offscreen version of “offscreen.vt” in batch mode produces an image named “image.png”.

6.4.1 Running a Specific Workflow in Batch Mode

To run a specific workflow in batch mode, call VisTrails with the following options:

python vistrails.py -b path_to_vistrails_file:pipeline

where pipeline can be a version tag name or version id.

Note

If you downloaded the MacOS X bundle, you can run VisTrails from the command line via the following com-
mands in the terminal. Change the current directory to wherever VisTrails was installed (often /Applications),
and then type: Vistrails.app/Contents/MacOS/vistrails [<cmd_line_options>]

6.4.2 Running a Workflow with Specific Parameters

An alias is a name assigned to a parameter that allows you to reference that parameter in batch mode. An alias is
created by clicking on the type of an existing parameter in VisTrails, then entering a name for it.

Figure 6.3: Example of creating an alias

Users can change workflow parameters that have an alias through the command line.

For example, offscreen pipeline in offscreen.vt always creates the file called image.png. If you want generate it with a
different filename:

python vistrails.py -b ../examples/offscreen.vt:offscreen
-a"filename=other.png"

filename in the example above is the alias name assigned to the parameter in the value method inside the String module.
When running a pipeline from the command line, VisTrails will try to start the spreadsheet automatically if the pipeline

6.4. Running VisTrails in Batch Mode 133

VisTrails Documentation, Release 2.0.3

requires it. For example, this other execution will also start the spreadsheet (attention to how $ characters are escaped
when running on bash):

python vistrails.py -b ../examples/head.vt:aliases -a"isovalue=30\$&\$diffuse_color=0.8,
0.4, 0.2"

You can also execute more than one pipeline on the command line:

python vistrails.py -b ../examples/head.vt:aliases ../examples/spx.vt:spx \
-a"isovalue=30"

Use the -a parameter only once regardless the number of pipelines.

6.4.3 Accessing a Database in Batch Mode

As discussed in Section Passing Database Parameters on the Command Line, you can specify most of the parameters
of your database connection on the command line, but the password must be entered through the GUI. This poses a
problem for running VisTrails in non-interactive mode, since no database connection dialog will be opened. If your
batch process needs to access vistrails stored on a database, the current workaround is to create a special account on the
database (probably one with read-only access) that does not require a password, and use this account for connecting
to the database in batch mode.

6.4.4 Using VisTrails as a Server

Using the VisTrails server mode, it is possible to execute workflows and control VisTrails through another application.
For example, the CrowdLabs Web portal (http://www.crowdlabs.org) accesses a VisTrails sever to execute workflows,
retrieve and display vistrail trees and workflows.

The way you access the server is by doing XML-RPC calls. In the current VisTrails release, we include a set of PHP
scripts that can talk to a VisTrails server instance. They are in “extensions/http” folder. The files are reasonably well
documented. Also, it should be not difficult to create python scripts to access the server (just use xmlrpclib module).

Note that the VisTrails server requires the provenance and workflows to be in a database. More detailed instructions
on how to setup the server and the database are available in VisTrails Server Setup and in Setting up the database.

If what you want is just to execute a series of workflows in batch mode, a simpler solution would be to use the VisTrails
client in batch mode (see Section Running VisTrails in Batch Mode).

6.5 Executing Workflows in Parallel

The VisTrails server can only execute pipelines in parallel if there’s more than one instance of VisTrails running. The
command

self.rpcserver=ThreadedXMLRPCServer((self.temp_xml_rpc_options.server,
self.temp_xml_rpc_options.port))

starts a multithreaded version of the XML-RPC server, so it will create a thread for each request received by the server.
The problem is that Qt/PyQT doesn’t allow these multiple threads to create GUI objects. Only the main thread can.
To overcome this limitation, the multithreaded version can instantiate other single threaded versions of VisTrails and
put them in a queue, so workflow executions and other GUI-related requests, such as generating workflow graphs and
history trees can be forwarded to this queue, and each instance takes turns in answering the request. If the results are
in the cache, the multithreaded version answers the requests directly.

Note that this infrastructure works on Linux only. To make this work on Windows, you have to create a script similar to
start_vistrails_xvfb.sh (located in the scripts folder) where you can send the number of other instances via command-
line options to VisTrails. The command line options are:

134 Chapter 6. Command-line Arguments

http://www.crowdlabs.org

VisTrails Documentation, Release 2.0.3

python vistrails_server.py -T <ADDRESS> -R <PORT> -O<NUMBER_OF_OTHER_VISTRAILS_INSTANCES>
[-M]&

If you want the main vistrails instance to be multithreaded, use the -M at the end.

After creating this script, update function start_other_instances in vistrails/gui/application_server.py lines 1007-1023
and set the script variable to point to your script. You may also have to change the arguments sent to your
script (line 1016: for example, you don’t need to set a virtual display). You will need to change the path to the
stop_vistrails_server.py script (on line 1026) according to your installation path.

6.6 Finding Methods Via the Command Line

We have tried to make some methods more accessible in the console via an api. You can import the api via import api
in the console and see the available methods with dir(api). To open a vistrail:

import api
api.open_vistrail_from_file(’/Applications/VisTrails/examples/terminator.vt’)

To execute a version of a workflow, you currently have to go through the controller:

api.select_version(’Histogram’)
api.get_current_controller().execute_current_workflow()

Currently, only a subset of VisTrails functionality is directly available from the api. However, since VisTrails is written
in python, you can dig down starting with the VistrailsApplication or controller object to expose most of our internal
methods. If you have suggestions for calls to be added to the api, please let us know.

One other feature that we’re working on, but is still in progress is the ability to construct workflows via the console.
For example:

vtk = load_package(’edu.utah.sci.vistrails.vtk’)
vtk.vtkDataSetReader() # adds a vtkDataSetReader module to the pipeline
click on the new module
a = selected_modules()[0] # get the one currently selected module
a.SetFile(’/vistrails/examples/data/head120.vtk’) # sets the SetFile\

parameter for the data set reader
b = vtk.vtkContourFilter() # adds a vtkContourFilter module to the\

pipeline and saves to var b
b.SetInputConnection0(a.GetOutputPort0()) # connects a’s GetOutputPort0\

port to b’s SetInputConnection0

6.6. Finding Methods Via the Command Line 135

VisTrails Documentation, Release 2.0.3

136 Chapter 6. Command-line Arguments

CHAPTER

SEVEN

ACCESSING THE EXECUTION LOG

The code responsible for storing execution information is located in the “core/log” directories, and the code that
generates much of that information is in “core/interpreter/cached.py”. Modules can add execution-specific annotations
to provenance via annotate() calls during execution, but much of the data (like timing and errors) is captured by the
LogController and CachedInterpreter (the execution engine) objects. To analyze the log from a vistrail (.vt) file, you
might have something like the following:

import core.log.log
import db.services.io

def run(fname):
open the .vt bundle specified by the filename "fname"
bundle = db.services.io.open_vistrail_bundle_from_zip_xml(fname)[0]
get the log filename
log_fname = bundle.vistrail.db_log_filename
if log_fname is not None:

open the log
log = db.services.io.open_log_from_xml(log_fname, True)
convert the log from a db object
core.log.log.Log.convert(log)
for workflow_exec in log.workflow_execs:

print ’workflow version:’, workflow_exec.parent_version
print ’time started:’, workflow_exec.ts_start
print ’time ended:’, workflow_exec.ts_end
print ’modules executed:’, [i.module_id

for i in workflow_exec.item_execs]
if __name__ == ’__main__’:

run("some_vistrail.vt")

You should be able to see what information is available by looking at the “core/log” classes.

137

VisTrails Documentation, Release 2.0.3

138 Chapter 7. Accessing the Execution Log

CHAPTER

EIGHT

EXAMPLE: ITK

8.1 Introduction to ITK

The Insight Toolkit, 1 or ITK, is an open-source software system initially designed to support the Visible Human
Project [C1]. ITK is under continual development, being updated to employ cutting-edge segmentation and registration
algorithms for multiple dimensions. For more information about ITK, please refer to [C2] and [C3].

In order to facilitate the implementation of processing mechanisms specific to the medical imaging community, ITK
provides a robust set of general purpose image processing tools. These image processing tools are available to users
through the standard ITK Filter interface. Although ITK is implemented in C++, through the use of CMake 2 and
CableSwig 3, the functionality of ITK is made available to languages such as TCL, Java, and Python. In addition,
much of the functionality of ITK is also available in a VisTrails package. The ITK package is not currently included
in the binary distribution of VisTrails, but it may be downloaded separately from the VisTrails website.

Note: The WrapITK library, upon which the VisTrails ITK package depends, is well-tested on Linux and Mac OS X
platforms. It is, however, known to have issues under Windows.

8.2 Preparing ITK

At the time of this writing, the latest stable release of ITK is 3.6.0. In order to incorporate the functionality of ITK
into the VisTrails system, it first must be built and installed. In the following sections, we will describe in detail the
process of downloading, building, and installing ITK and all the required components needed to use it.

8.2.1 Downloading ITK

ITK can be downloaded in either source tarballs or via public CVS access to the ITK source repository. The fol-
lowing instructions take advantage of the CVS source repository; however, source tarballs can be downloaded from:
http://www.itk.org/

These instructions can be found, in part, at the ITK website. To use CVS, you must have a CVS client installed on
your system. To download the ITK library, issue the following commands:

cvs -d :pserver:anonymous@www.itk.org:/cvsroot/Insight login
password: insight

cvs -d :pserver:anonymous@www.itk.org:/cvsroot/Insight co Insight

1 The Insight Toolkit is sometimes referred to by the longer name Insight Segmentation and Registration Toolkit.
2 CMake cross-platform make system. http://www.cmake.org
3 CableSwig Interface generator. http://www.itk.org/HTML/CableSwig.html

139

http://www.itk.org/
http://www.cmake.org
http://www.itk.org/HTML/CableSwig.html

VisTrails Documentation, Release 2.0.3

Change directory into the newly created Insight/Utilities directory and issue the following command:

cvs -d :pserver:anonymous@public.kitware.com:/cvsroot/CableSwig co CableSwig

This checkout includes CableSwig in the ITK system, allowing it to be built automatically during compilation of ITK
itself.

8.2.2 Building the ITK Libraries

ITK requires CMake to be installed and available on your system. As of ITK version 3.2.0, CMake version 2.4.6 or
greater must be used to prevent compilation errors. In order to simplify updating ITK to later versions of the software,
we perform an out-of-source build. To do this, we first create a directory outside the Insight directory created for us
during the CVS checkout process.

mkdir itk
cd itk

We now run CMake, or the GUI-based version ccmake, in this directory. If you’re using Windows, you may wish to
run the Windows-specific cmake-gui.exe instead.

ccmake ../Insight

Note: The above command assumes that the Insight directory exists at the same level as the itk directory that we just
created.

The following advanced CMake variables must be set to the appropriate values:

CMake Variable Value
BUILD_SHARED_LIBS ON
INSTALL_WRAP_ITK_COMPATIBILITY ON
ITK_CSWIG_PYTHON OFF
ITK_USE_REVIEW ON
USE_WRAP_ITK ON
WRAP_ITK_PYTHON ON
WRAP_ITK_JAVA OFF

Note: Some CMake variables are only available based on the state of others. If a variable is missing from the list, set
what is visible and re-configure, this will often allow you to see and set additional parameters.

After generating the appropriate files and exiting ccmake, the standard build process can be completed. To compile
(on Linux or Mac OS X), run:

make
sudo make install

On Windows, the build process is governed by the type of project or Makefile generated by CMake.

Note:

It is possible to use ITK without installing it. To do this, the environment variables LD_LIBRARY_PATH and
PYTHONPATH must be set to the appropriate build directories:

LD_LIBRARY_PATH=/Path_To_itk/bin

PYTHONPATH=/Path_To_itk/Wrapping/WrapITK/Python

At this point, ITK is build and installed. To validate this, open a Python shell and issue the following commands:

140 Chapter 8. Example: ITK

VisTrails Documentation, Release 2.0.3

>>> import itk
>>> itk.Image[itk.US,2]

The above commands should both complete without error, and should produce the output:

<class ’itkImage.itkImageUS2’>

The WrapITK implementation used to wrap ITK for use in Python lazily instantiates required classes. This means that
even if the import succeeds, the instantiation of the above itk.Image class may fail. This is particularly common if
the environment variable LD_LIBRARY_PATH is incorrectly set.

8.3 ITK and VisTrails

When built and installed with the appropriate Python bindings included, ITK can be used from VisTrails through the
ITK package. As mentioned previously, ITK is a third-party package and is not included in the general VisTrails
distribution. However, like many third-party packages, it is available from the VisTrails website. 4

The VisTrails ITK package is under continual development with the latest versions being announced on the VisTrails
website. After downloading the package and extracting it into the .vistrails/userpackages directory, you
can enable it through the Module Packages tab in the Preferences dialog. Please refer to Chapter Writing
VisTrails Packages for instructions on how to do this.

Upon starting VisTrails, the ITK package modules will be made available to the Builder Window.

8.3.1 ITK Package Organization

The ITK VisTrails package loosely mimics the ITK functionality hierarchy. The package’s top level consists of base
classes, containers, and file readers as shown in Figure (a) The VisTrails ITK Package Structure Overview. Also
available at the top level is the PixelType module and the specific types used to create and execute ITK-based
pipelines.

Currently, the ITK Image Filters are organized into functional groups. The five filter types, as show in Figure (c) The
ITK Package Filter Structure, are:

• Feature Extraction Filters

• Image Intensity Filters

• Segmentation Filters

• Image Selection Filters

• Image Smoothing Filters

All filter types currently have at least one representative ITK filter wrapped and usable from within the VisTrails
environment.

8.3.2 Reading DICOM Volumes

DICOM is a standard format for exchanging medical images. ITK includes DICOM support through the GDCM
libraries. 5 It is worthwhile to note that at this time these libraries are currently not a complete implementation of the
DICOM standard.

4 Please Note: At the time of this writing, the VisTrails ITK package is not a complete wrapping of all ITK functionality. If you would like to
contact the author regarding the wrapped functionality, please do so through the e-mail address on the VisTrails website.

5 Grass roots DiCoM Project. http://www.creatis.insa-lyon.fr/Public/Gdcm/

8.3. ITK and VisTrails 141

http://www.creatis.insa-lyon.fr/Public/Gdcm/

VisTrails Documentation, Release 2.0.3

Figure 8.1: (a) The VisTrails ITK Package Structure Overview

Figure 8.2: (b) The ITK Package Supported PixelTypes

Figure 8.3: (c) The ITK Package Filter Structure

142 Chapter 8. Example: ITK

VisTrails Documentation, Release 2.0.3

DICOM volumes can be integrated into VisTrails through the use of either the GDCMReader or DICOMReader
modules in the ITK package. For the rest of this example, we will use the GDCMReader module as its performace is
slightly higher than the DICOMReader implementation.

Figure VisTrails workflow utilizing ITK to extract a single slice... shows the use of the GDCMReader module. In order
to properly read a DICOM volume, the GDCMReader must be supplied with the dimension of the volume to be read
and the directory containing the series to read. By default, WrapITK supports two- and three-dimensional volumes. In
order to include support for higher dimensions, the appropriate WrapITK variable must be set within CMake, before
compiling ITK.

8.3.3 Volume Processing With ITK and VisTrails

Typically, DICOM volumes are written with no 16-bit unsigned shorts. Unfortunately, most systems allow the display
of only 8-bit values. Because of the higher precision inherent in DICOM data, it is often preferable to perform any
computation, segmentation, or processing on the data prior to rescaling in order to utilize as much information as
possible.

Figure 8.4: VisTrails workflow utilizing ITK to extract a single slice from a DICOM volume. The slice is chosen by
first forming a Region to extract. The result is viewed through the use of standard VisTrails Spreadsheet modules.

8.3.4 Volume Processing With ITK and VisTrails

ITK image filters are typically templated based on the dimensionality of the data being processed, as well as the data
type being processed. In VisTrails, these parameters are handled through the use of PixelType modules. Although
any ITK Filter wrapped in vistrails can accept any of these PixelTypes, the underlying implementation may not be
compatible with the input PixelType. Using PixelTypes incompatible with the underlying filter implementations
is the most frequent cause of error when executing otherwise functional pipelines in VisTrails.

8.3. ITK and VisTrails 143

VisTrails Documentation, Release 2.0.3

When processing volumes, it is often necessary to extract a single slice from the volume at different stages of the
processing pipeline. This is possible in VisTrails through the use of the ExtractImageFilter. Given a volume,
a Region, and Dimensionality information, the ExtractImageFilter can extract a single slice from the data
volume that can be used in further processing, previewing the results, or writing to disk. An example workflow that
extracts a slice from a DICOM volume can be seen in Figure VisTrails workflow utilizing ITK to extract a single slice....

8.3.5 Visualizing the results

Although ITK’s processing filters and the DICOM standard both support 16-bit processing and storage, many image
viewers are capable of displaying in only 8-bit resolution using the unsigned char PixelType. Since the output of an
ITK processing workflow is an image, it makes sense to view it as such. This means that we are required to both remap
the data values in the image to 8 bits as well as perform a casting operation to change the data type from unsigned shorts
to unsigned chars. These operations are performed through the use of the RescaleIntensityImageFilter and
the CastImageFilter. Figure VisTrails workflow utilizing ITK to extract a single slice... demonstrates the use of
the RescaleIntensityImageFilter and the CastImageFilter in conjunction with the ImageToFile
and ImageViewerCell modules to view the resulting slice in the VisTrails Spreadsheet.

Citations

144 Chapter 8. Example: ITK

CHAPTER

NINE

CREATING A CONTROL FLOW LOOP
MODULE

This chapter explains how to extend the Control Flow package by creating additional loop modules. For more
information on Control Flow or the Control Flow Assistant, please refer to Control Flow in VisTrails or
The Control Flow Assistant in the User’s Guide.

9.1 Building your own loop structure

In functional programming, fold is a high-order function used to encapsulate a pattern of recursion for processing
lists. A simple example of a fold is summing the elements inside a list. If you fold the list [1, 2, 3, 4] with the sum
operator, the result will be (((1+2)+3)+4) = 10. It’s common to start with an initial value too. In the sum example, the
initial value would be 0, and the result would be ((((0+1)+2)+3)+4) = 10.

With this function, a programmer can do any type of recursion. In fact, the map and filter functions, shown
previously, can be implemented with fold. The Control Flow package provides a Fold module to enable this
functionality, and the Map and the Filter modules inherit from the Fold class.

In fact, any control module that has this kind of recursion uses the Fold class. To use this functionality for your own
control modules, instead of defining the compute() method, you need to define two other methods:

• setInitialValue(): in this method, you will set the initial value of the fold operator through the
self.initialValue attribute;

• operation(): in this method, you must implement the function to be applied recursively to the elements of
the input list (e.g., the sum function). More specifically, you need to define the relationship between the previous
iteration’s result (self.partialResult attribute) and the current element of the list (self.element
attribute); this method must be defined after the setInitialValue() one.

It’s important to notice that all modules inheriting from Fold will have the same ports, as Map and Filter, but you
can add any other ports that will be necessary for your control structure. Also, you do not need to use the input ports
“FunctionPort”, “InputPort” and “OutputPort”. You will only use them when you create an operator like Map and
Filter, which need a function to be applied for each element of the input list.

As an example, we will create a simple Sum module to better understand the idea. Create a new package, and the code
inside it would be as follows:

1 from controlflow import Fold, registerControl
2

3 version = "0.1"
4 name = "My Control Modules"
5 identifier = "edu.utah.sci.my_control_modules"

145

VisTrails Documentation, Release 2.0.3

6

7 def package_dependencies():
8 return ["edu.utah.sci.vistrails.control_flow"]
9

10 class Sum(Fold):
11 def setInitialValue(self):
12 self.initialValue = 0
13

14 def operation(self):
15 self.partialResult += self.element
16

17 def initialize(*args,**keywords):
18 registerControl(Sum)

We begin by importing the Fold class and the registerControl function from the Control Flow package
(Line 1). The registerControl function is used to register the control modules, so the shape of them can be set
automatically.

Also, define the variables version, name and identifier, as it’s done for all packages. The interpackage de-
pendency (include reference of the package chapter) is used too, as My Control Modules requires a module
and a function from Control Flow (Lines 7 and 8); in this way, VisTrails can initialize the packages in the cor-
rect order. Then, create the class Sum, which inherits from Fold. Inside it, set the initial value to 0 inside the
setInitialValue() method (Lines 11 and 12), and define the sum operator inside operation(), as shown
clearly by the relation between self.partialResult and self.element (Lines 14 and 15).

The last thing we must do is define the initialize() method, so the package can be loaded in VisTrails. However,
instead of calling the registry, if you do not need any other ports, you just have to call the registerControl()
function (Line 18).

Save this package and enable it inside VisTrails. Create a similar workflow as shown in Figure A workflow using the
Sum module.

Figure 9.1: A workflow using the Sum module

Upon executing this workflow, the sum ((((0+1)+2)+3)+4), should be printed on your terminal as follows:

146 Chapter 9. Creating a Control Flow Loop Module

VisTrails Documentation, Release 2.0.3

10

Note that the input ports “FunctionPort”, “InputPort” and “OutputPort” were not necessary for this module. Now,
let’s see another example that does use them. Open the workflow we used to calculate the area of isosurfaces
(in “triangle_area.vt”, “Surface Area with Map and Filter” version), and delete the Map, the Filter, and the
FilterCondition (PythonSource) modules.

Now, create a single module that maps the list and filters the results, named as AreaFilter. Inside your package,
add the following class:

1 class AreaFilter(Fold):
2 def setInitialValue(self):
3 self.initialValue = []
4

5 def operation(self):
6 area = self.elementResult
7

8 if area>200000:
9 self.partialResult.append(area)

The initial value is an empty list, so the result of each element can be appended to it (Line 3). In the operation()
method, the self.elementResult attribute is used (Line 6); it represents the result of the port chosen in “Out-
putPort”; so, it means that “FunctionPort”, “InputPort” and “OutputPort” will have connections. In this workflow,
self.elementResult is the area for each contour value inside the input list, and, if the area is above 200,000, it
will be appended to the final result (Lines 8 and 9). We can easily see that this module does exactly the same as Map
and Filter combined.

Don’t forget to register this module in the initialize() function. After doing this, save the package and load it
again inside VisTrails. Then, just connect AreaFilter as in Figure The same workflow, but now with AreaFilter.

Figure 9.2: The same workflow, but now with AreaFilter

Now, you must set some values in the following parameters of AreaFilter:

9.1. Building your own loop structure 147

VisTrails Documentation, Release 2.0.3

• “InputPort”: [”SetValue”]

• “OutputPort”: GetSurfaceArea

When you execute this workflow, the result in the VisTrails Spreadsheet will be the same as shown previously (Figure
The result in the VisTrails spreadsheet). It shows the flexibility of doing a recursion function by inheriting from Fold.

148 Chapter 9. Creating a Control Flow Loop Module

CHAPTER

TEN

WRAPPING COMMAND LINE TOOLS
USING PACKAGE CLTOOLS

10.1 Package CLTools

The package CLTools provide a way to wrap command line tools so that they can be used as modules in VisTrails.
It includes a wizard that simplifies the creation of wrappers. To use the package, enable CLTools in the package
configuration window. The package will be empty until you add a wrapper for a command line tool. When you have
added a wrapper you need to reload the wrappers by either pressing the reload button in the wizard, reloading the
CLTools package, or selecting Packages->CLTools->Reload All Scripts on the menu.

10.1.1 Using the CLTools Wizard

You can run the Wizard from within VisTrails. First, make sure the CLTools package is enabled. Then, on the menu,
select Packages->CLTools->Open Wizard.

Or, to launch the wizard from the command line run: python vistrails/package/CLTools/wizard.py

The wizard allows you to create and edit wrappers for command line tools. Input/output ports can be created as
arguments to the command or using pipes (stdin, stdout, or stderr). Figure 1.1 shows the main interface. Command
line arguments can be added, removed and rearranged. Pipes can be added and configured. There is a preview line
where you can see how your command will look when executed. You can also push the preview button to see which
ports will be available for the vistrails module, as shown in the bottom right. This example shows some of the most
common ways to specify arguments. In order: The standard output is used as a string output port, an integer attribute
using the -i flag, a boolean flag -A that can be turned on or off, an input file using a prefix, an output file using the -o
flag, and finally a simple string input. Note the way arguments correspond to ports in the bottom right.

Arguments can represent either input ports, output ports, both, or constant strings. Ports can handle different types
such as boolean flags, strings, integers, floats, or files. Lists of strings and files are also possible. Each argument can
have a flag before it such as -f or a prefix such as --file=.

A file ending can be specified for files that are used as outputs using file suffix.

You can view and import flags from man and help pages (See Figure 1.2).

Files should be saved as {modulename}.clt in the directory .vistrails/CLTools/

Supported flags:

-c Import a command with arguments automatically
For example, to create a wrapper for ls with two flags -l and -A run:
python wizard.py -c ls -l -A

149

VisTrails Documentation, Release 2.0.3

Figure 10.1: Figure 1.1 - CLTools Wizard main window

150 Chapter 10. Wrapping command line tools using package CLTools

VisTrails Documentation, Release 2.0.3

Figure 10.2: Figure 1.2 - Import Arguments Window

10.1. Package CLTools 151

VisTrails Documentation, Release 2.0.3

Try it Now!

Create a wrapper that takes a file as input and generate a file as output using -o. The ports should always be
visible. The command looks like:

filter infile -o outfile

Your wrapper should look like in figure Figure 1.3. Note that the order of the arguments is always preserved:

Figure 10.3: Figure 1.3 - An infile outfile wrapper

10.1.2 Port visibility

Figure 1.4 shows how the visible setting affects ports in VisTrails. Visible ports are meant to be connected to other
modules, and are shown as square input or output ports on the module, while non-visible ports are meant to be
optional, or added as parameters on the input port list to the right. Non-visible ports can be made visible on the
module by clicking on the left side of the ports pane, so that a eye icon is displayed. The example below has 2 visible
input ports and one visible output port. The input list to the right shows available inputs, bot visible and non-visible.
The first input in the input list to the right is visible by default, which is shown by a greyed-out eye. The second port
is non-visible by default but has been made visible as shown by the eye icon. The second input is non-visible but can
be made visible on the module by clicking so that the eye icon becomes visible.

10.1.3 Environment Variables

There are three ways to set environment variables in CLTools. If your environment variables is platform-dependent,
you should set the env configuration variable for the CLTools package. In VisTrails, go to the Preferences->Module
Packages dialog, select CLTools, make sure it is enabled, and select Configure.... Set the env variable to the preferred
environment. Separate name and value using = and variables using ;, like this:

PATH=/my/custom/path;DEBUG=;MYVAR=32

152 Chapter 10. Wrapping command line tools using package CLTools

VisTrails Documentation, Release 2.0.3

Figure 10.4: Figure 1.4 - Port visibility in VisTrails

If you want to specify the variables in your workflow, you can enable the env input port on your module by checking the
env option in the top toolbar in the CLTools wizard. Then you can specify environment variables either as parameters
to your module or by connecting the env input port to other modules. Multiple parameters can be specified as a single
string or by adding multiple env parameters. These variables overrides variables specified using the other two methods.

For modules that always need the same environment variables, they can be added to the module by editing the .clt file
directly and adding an env entry in the options section as shown below. These variables overrides the ones specified
in the CLTools configuration:

{
"command": "ls",
"options": {

"env": "MYVAR=/my/custom/path;MYVAR2=64"
}

}

Note that if you replace e.g. the PATH variable, you should include the existing path, which can be found by running
e.g. echo $PATH on the command line.

10.1.4 Setting working directory

The Directory field to the right of the command field can be used to specify the working directory where the command
will be executed. It does not specify the directory where the command is found. Use the PATH enviroment variable
for that.

10.1.5 InputOutput files

The InputOutput port should be used for commands that modifies a file in-place, so that it is used both as and input
and an output. An example of using the InputOutput module is shown in Figure 1.5. When executed, the input file will
be copied to a temporary file before it is passed to the command and used as an output. This is because you should not
(if you can avoid it) modify the inputs to your modules, because they may be used by other modules, or re-executed
by the same module. It may be useful to set the file suffix attribute to make sure the copied file is of the same type as
the original. There is currently no way of passing the original file to the command, since it is discouraged. But if this
is necessary in a particular case, CLTools can be easily modified to do this.

10.1. Package CLTools 153

VisTrails Documentation, Release 2.0.3

Figure 10.5: Figure 1.5 - Example of an InputOutput port

10.1.6 Creating a standalone package

When you have a working set of wrappers and want to distribute them, you should put them in a separate module
package. This allows you to name and version your package, and makes sure there are no conflicts with modules using
the same name as yours. One warning: workflows using the old modules will need to be recreated to use the modules
in this new package instead, so it is better to start building workflows after a separate package has been created. Below
are the steps to follow in order to set up a new package.

1. Create a new directory in $HOME/.vistrails/userpackages/

2. Copy __init__.py and init.py from vistrails/packages/CLTools to this new directory

3. Update name, identifier, and version in __init__.py to the desired values

4. Move all desired tools (*.clt files) to this new directory

5. Enable and test your new package!

10.1.7 File Format

The wrapper is stored as a JSON file and can be edited using a text editor if needed. It uses the following schema:

ROOT is a dict with the following possible keys:

• command (required) - value is the command to execute like “cat” or “/home/tommy/cat”

• stdin - handle stdin - value is a 3-list [”port name”, CLASS, OPTIONDICT]

• stdout - handle stdout - value is a 3-list [”port name”, CLASS, OPTIONDICT]

• stderr - handle stdout - value is a 3-list [”port name”, CLASS, OPTIONDICT]

• args - list of ordered arguments that can either be constants, inputs, or outputs. See ARG.

• dir - value is the working directory to execute the command from

• options - a dict of module options - see OPTIONDICT

OPTIONDICT is a dict with module specific options, recognized options are:

• std_using_files - connect files to pipes so that they need not be stored in memory. This is useful for large files
but may be unsafe since it does not use subprocess.communicate

154 Chapter 10. Wrapping command line tools using package CLTools

http://www.json.org/

VisTrails Documentation, Release 2.0.3

• env - A list of environment variables to set when executing the command, with entries separated by ; and
key/value pairs separated by =. This overrides all other environment variables set, except for the env_port, and
should only be used when they are not expected to change. It can only be set by editing the .clt files directly
with a text editor.

• env_port - Set to add an input port env for specifying the environment variables to use, this overrides all other
environment variables set

ARG is a 4-list containing [TYPE, “name”, KLASS, ARGOPTIONDICT] TYPE is one of:

• input - create input port for this arg

• output - create output port for this arg

• inputoutput - create both input and output port for this arg. The type must be File and a copy of the original
file will be processed and used as output.

• constant - use “port name” directly as a constant string

CLASS indicates the port type and can be one of the following. String is used by default.

• File - A vistrails File type. The filename will be used as the argument

• String - A vistrails String type. The string will be used as the argument

• Integer - A vistrails Integer type. Its string value will be used as the argument

• Float - A vistrails Float type. Its string value will be used as the argument

• Flag - A vistrails Bool type. A boolean flag that when set to true will add the value of the argument to the
command.

• List - A list of values of the type specified by the type option. All values in the list will be added as arguments.

ARGOPTIONDICT is a dict containing argument options. recognized options are:

• type: CLASS - used by List-types to specify subtype.

• flag: name - Append name as a short-style flag before the specified argument. If type is List it is appended
before each item

• prefix: name - Append name as a long-style prefix to the final argument. If it is also a list it is appended to each
item.

• required: None - Makes the port always visible in VisTrails.

• suffix: name - Specifies the file ending for created files

10.1. Package CLTools 155

VisTrails Documentation, Release 2.0.3

Try it Now!

Wrap the command “cat” that takes 2 files as input named “first” and “second”. Also take a list of files as input
named “rest”. Catch stdout as file, name it “combined”. Catch stderr as string, name it “stderr”. Show “first”
and “combined” by default.
Your wrapper should now look like this:

{"command": "cat",
"args": [["input", "first", "File", {"required":""}],

["input", "second", "File", {}],
["input", "rest", "List", {"type":"File"}]],

"stdout": ["combined", "File", {"required":""}],
"stderr": ["stderr", "String", {}]
}

Save as {yourhomedirectory}/.vistrails/CLTools/cat.clt Reload CLTools package in Vis-
Trails. Test the new module.

156 Chapter 10. Wrapping command line tools using package CLTools

Part III

Indices and tables

157

VisTrails Documentation, Release 2.0.3

• genindex

• search

159

VisTrails Documentation, Release 2.0.3

160

BIBLIOGRAPHY

[C1] 18. (a) Banvard, “The visible human project image data set from inception to completion and beyond,” Pro-
ceedings of CODATA, 2002.

[C2] 12. Ibanez, W. Schroeder, L. Ng, and J. Cates, The ITK Software Guide, 2nd ed., Kitware, Inc. ISBN 1-
930934-15-7, http://www.itk.org/ItkSoftwareGuide.pdf, 2005.

[C3] 20. (a) Yoo, M. J. Ackerman, W. E. Lorensen, W. Schroeder, V. Chalana, S. Aylward, D. Metaxes, and R.
Whitaker, “Engineering and algorithm design for an image processing API: A technical report on ITK -
The Insight Toolkit,” Proceedings of Medicine Meets Virtual Reality, pp. 586-592, 2002.

161

http://www.itk.org/ItkSoftwareGuide.pdf

VisTrails Documentation, Release 2.0.3

162 Bibliography

INDEX

Symbols
‘‘-output_ports‘‘

Module registry, 122
‘‘ConfigurationObject‘‘, 117
‘‘ModuleError‘‘

modules, 110, 114
‘‘_input_ports‘‘

Module registry, 122
‘‘_modules‘‘

Module registry, 122
‘‘addInputPort‘‘

Module registry, 110
‘‘addModule‘‘

Module registry, 110
‘‘addOutputPort‘‘

Module registry, 110
‘‘add_Module‘‘

Module registry, 114
‘‘add_input_port‘‘

Module registry, 114
‘‘add_output_port‘‘

Module registry, 114
‘‘filePool‘‘

packages, 117
‘‘initialize‘‘

packages, 110, 114

A
adding

connections, 17
modules, 15, 92
ports, 20
spreadsheet sheets, 40
tags, 30

adding parameters
parameter exploration, 50

aliases
mashups, 59

analogy, 44
visual diff, 46

animation, 50, 53

annotations
versions, 30

B
basic

modules, 20
batch mode, 132
builder, 15, 22
by example

queries, 34

C
caching

modules, 121
cells

creating, spreadsheet, 40
positioning, spreadsheet, 40
spreadsheet, 39, 41
web browser, spreadsheet, 43

center, 14
changing

parameters, 17
close

vistrail, 12
color

modules, 123
columns

spreadsheet, 39
command line arguments, 129
comparing

versions, 31
configuration

packages, 116
configuration directory, 130
configuring aliases

mashups, 59
connecting

modules, 17
connections

adding, 17
definition, 12
selecting, 15

163

VisTrails Documentation, Release 2.0.3

control flow
parameter exploration, 83

control flow assistant, 81
creating

spreadsheet cells, 40

D
database, 86, 90

issues, 90
opening from, 88
saving to, 89
setup, 88

default values
ports, 124
spreadsheet, 39

definition
connections, 12
modules, 12
vistrail, 12

deleting
modules, 15
ports, 20
spreadsheet sheets, 40
tags, 30

dependencies
packages, 119

diff
see versions, comparing, 31

differences
parameters, 31

directions
parameter exploration, 50

docking
spreadsheet sheets, 40

dynamic
modules, 125

E
editing

spreadsheet modes, 42
execute, 13
exploring

parameters, 50, 83

F
from a database

open, 12

G
grouping, 23

modules, 23
groups

subworkflows, 25

H
history, 27

I
image

spreadsheet saving, 44
input

persistent files, 94
input dependency

ports, 125
interactive

spreadsheet modes, 41
intermediate

persistent files, 95
issues

database, 90

L
labels

modules, 19
ports, 124

layout
spreadsheet, 39

legend, 31
list of examples

modules, 64
location

view, 11
log, 137

M
mashups

aliases, 59
configuring aliases, 59
naming, 59
saving, 59
setting parameters, 59

merging, 32
methods, 17
modes

editing, spreadsheet, 42
interactive, spreadsheet, 41
spreadsheet, 40

module connectivity
ports, 125

Module registry
‘‘-output_ports‘‘, 122
‘‘_input_ports‘‘, 122
‘‘_modules‘‘, 122
‘‘addInputPort‘‘, 110
‘‘addModule‘‘, 110
‘‘addOutputPort‘‘, 110
‘‘add_Module‘‘, 114

164 Index

VisTrails Documentation, Release 2.0.3

‘‘add_input_port‘‘, 114
‘‘add_output_port‘‘, 114

modules, 15
‘‘ModuleError‘‘, 110, 114
adding, 15, 92
basic, 20
caching, 121
color, 123
connecting, 17
definition, 12
deleting, 15
dynamic, 125
grouping, 23
labels, 19
list of examples, 64
namespaces, 122
packages, 122
parameters, 17
ports, 20
selecting, 15
shape, 123
subworkflows, 25
ungrouping, 23
visibility, 122
writing new, 109

multiple inputs
ports, 124

N
namespaces

modules, 122
naming

mashups, 59
navigating

versions, 31
non-interactive mode, 132
notes, 30

O
open

from a database, 12
vistrail, 12

opening from
database, 88

optional
ports, 124

ordering
spreadsheet sheets, 40

output
persistent files, 94

P
packages, 109

‘‘filePool‘‘, 117

‘‘initialize‘‘, 110, 114
configuration, 116
dependencies, 119
modules, 122
ports, 124
temporary files, 117
wrapping command-line tools, 115

palette
views, 11

pan, 13
parameter exploration, 50, 57

adding parameters, 50
control flow, 83
directions, 50
running, 50
setting values, 50
spreadsheet, 50, 55

parameters
changing, 17
differences, 31
exploring, 50, 83
modules, 17

persistent files
input, 94
intermediate, 95
output, 94

port
shortcut, 122

port types
ports, 124

ports, 17
adding, 20
default values, 124
deleting, 20
input dependency, 125
labels, 124
module connectivity, 125
modules, 20
multiple inputs, 124
optional, 124
packages, 124
port types, 124

positioning
spreadsheet cells, 40

PythonSource, 21

Q
queries, 32, 38

by example, 34
textual, 37
viewing results, 34

R
redo, 13, 31

Index 165

VisTrails Documentation, Release 2.0.3

RichTextCell
spreadsheet, 93

rows
spreadsheet, 39

running
parameter exploration, 50

S
save

vistrail, 12
saving

image, spreadsheet, 44
mashups, 59
spreadsheet, 43

saving to
database, 89

search
refine, 38

select, 13
selecting

connections, 15
modules, 15

server, 97, 134
setting parameters

mashups, 59
setting values

parameter exploration, 50
setup

database, 88
shape

modules, 123
sheets

adding, spreadsheet, 40
deleting, spreadsheet, 40
docking, spreadsheet, 40
ordering, spreadsheet, 40

shortcut
port, 122

spreadsheet, 38, 44
cells, 39, 41
cells creating, 40
cells positioning, 40
cells web browser, 43
columns, 39
default values, 39
layout, 39
modes, 40
modes editing, 42
modes interactive, 41
parameter exploration, 50, 55
RichTextCell, 93
rows, 39
saving, 43
saving image, 44

sheets adding, 40
sheets deleting, 40
sheets docking, 40
sheets ordering, 40
virtual cell, 55

subworkflows, 25
groups, 25
modules, 25

T
tab, 12
tags, 27

adding, 30
deleting, 30
upgrading, 30

temporary files
packages, 117

textual
queries, 37

toolbar, 9

U
undo, 13, 31
ungrouping

modules, 23
upgrading

tags, 30

V
versions, 27, 31

annotations, 30
comparing, 31
navigating, 31
viewing, 27

view
location, 11

viewing
versions, 27

viewing results
queries, 34

views
palette, 11

virtual cell
spreadsheet, 55

visibility
modules, 122

vistrail
close, 12
definition, 12
open, 12
save, 12

VisTrails VTK modules, 61
visual diff

analogy, 46

166 Index

VisTrails Documentation, Release 2.0.3

see versions, comparing, 31
vtkInteractionHandler, 64

W
web browser

spreadsheet cells, 43
workflow, 12
wrapping command line tools using package CLTools,

149
wrapping command-line tools

packages, 115
writing new

modules, 109

Z
zoom, 13

Index 167

	I User's Guide
	Preliminary Pages
	Preface

	An Introduction to VisTrails
	What Is VisTrails?
	Getting Started

	Learning VisTrails By Example
	Creating and Modifying Workflows
	Groups and Subworkflows
	Interacting with the Version Tree
	Merging Two Version Trees
	Querying the Version Tree
	Spreadsheet
	Using Analogies to Update Workflows
	Parameter Exploration
	Provenance Browser
	Mashups
	Module Descriptions and Examples

	Intermediate Concepts and VisTrails Packages
	Control Flow in VisTrails
	The Control Flow Assistant
	Connecting to a Database
	Example: Web Services
	Persistence in VisTrails
	VisTrails Server Setup
	Embedding VisTrails Files Via Latex

	II Developer's Guide
	Writing VisTrails Packages
	Introduction
	Who Should Read This Chapter?
	A Simple Example
	Creating Reloadable Packages
	Wrapping Command-line tools
	Interfacing with the VisTrails Menu
	Interpackage Dependencies
	Package Requirements
	Interaction with Caching
	Customizing Modules and Ports
	Generating Modules Dynamically
	For System Administrators

	Command-line Arguments
	Starting VisTrails via the Command Line
	Specifying a User Configuration Directory
	Passing Database Parameters on the Command Line
	Running VisTrails in Batch Mode
	Executing Workflows in Parallel
	Finding Methods Via the Command Line

	Accessing the Execution Log
	Example: ITK
	Introduction to ITK
	Preparing ITK
	ITK and VisTrails

	Creating a Control Flow Loop Module
	Building your own loop structure

	Wrapping command line tools using package CLTools
	Package CLTools

	III Indices and tables
	Bibliography
	Index

