User:Tohline/PGE/Hybrid Scheme
Hybrid Scheme
| Tiled Menu | Tables of Content | Banner Video | Tohline Home Page | |
Traditional Eulerian Representation (Review)
Here we review the traditional Eulerian representation of the Euler Equation, as has been discussed in detail earlier.
in terms of velocity:
The so-called "Eulerian form" of the Euler equation can be straightforwardly derived from the standard Lagrangian representation to obtain,
Eulerian Representation
of the Euler Equation,
<math>~\frac{\partial\vec{v}}{\partial t} + (\vec{v}\cdot \nabla) \vec{v}= - \frac{1}{\rho} \nabla P - \nabla \Phi</math>
in terms of momentum density:
Also, we can multiply this expression through by <math>~\rho</math> and combine it with the continuity equation to derive what is commonly referred to as the,
Conservative Form
of the Euler Equation,
<math>~\frac{\partial(\rho\vec{v})}{\partial t} + \nabla\cdot [(\rho\vec{v})\vec{v}]= - \nabla P - \rho \nabla \Phi</math>
The second term on the left-hand-side of this last expression represents the divergence of the "dyadic product" of the vector momentum density (<math>~\rho</math><math>~\vec{v}</math>) and the velocity vector <math>~\vec{v}</math> and is sometimes written as, <math>\nabla\cdot [(\rho \vec{v}) \otimes \vec{v}]</math>.
Component Forms
Let's split the vector Euler equation into its three scalar components; various examples are identified in Table 1.
Example # |
Grid Basis |
Grid Rotation |
Momentum Basis |
Momentum Frame |
---|---|---|---|---|
1 |
Cartesian |
Nonrotating |
Cartesian |
Inertial |
2 |
Cylindrical |
Nonrotating |
Cylindrical |
Inertial |
Example #2
This component set has been spelled out in, for example, equations (5) - (7) of Norman & Wilson (1978) and equations (11), (12), & (3) of New & Tohline (1997).
<math>\boldsymbol{\hat{e}}_R: ~~~~~~~\frac{\partial (\rho v_R)}{\partial t} + \nabla\cdot[(\rho v_R) \vec{v}~]</math> |
<math>~=~</math> |
<math> -~\frac{\partial P}{\partial R} - \rho \frac{\partial \Phi}{\partial R} + \frac{(\rho R v_\phi)^2}{\rho R^3} + \rho\Omega_0^2 R + \frac{2\Omega_0 (\rho R v_\phi)}{R} \, , </math> |
|
<math>~=~</math> |
<math> -~\frac{\partial P}{\partial R} - \rho \frac{\partial \Phi}{\partial R} + \frac{\rho}{R} (v_\phi + R\Omega_0)^2 \, , </math> |
<math>\boldsymbol{\hat{e}}_\phi: ~~~\frac{\partial (\rho R v_\phi)}{\partial t} + \nabla\cdot[(\rho R v_\phi) \vec{v}~]</math> |
<math>~=~</math> |
<math> -~\frac{\partial P}{\partial \phi} - \rho \frac{\partial \Phi}{\partial \phi} - 2\rho (\Omega_0 R )v_R \, , </math> |
<math>\boldsymbol{\hat{e}}_z: ~~~~~~~~\frac{\partial (\rho v_z)}{\partial t} + \nabla\cdot[(\rho v_z) \vec{v}~]</math> |
<math>~=~</math> |
<math> -~\frac{\partial P}{\partial z} - \rho \frac{\partial \Phi}{\partial z} \, . </math> |
Related Discussions
- Euler equation viewed from a rotating frame of reference or Main Page.
- An earlier draft of this "Euler equation" presentation.
© 2014 - 2021 by Joel E. Tohline |