User:Tohline/SSC/Structure/BiPolytropes/Analytic0 0
BiPolytrope with <math>n_c = 0</math> and <math>n_e=0</math>
| Tiled Menu | Tables of Content | Banner Video | Tohline Home Page | |
Here we construct a bipolytrope in which both the core and the envelope have uniform densities, that is, the structure of both the core and the envelope will be modeled using an <math>n = 0</math> polytropic index. It should be possible for the entire structure to be described by closed-form, analytic expressions. Generally, we will follow the general solution steps for constructing a bipolytrope that we have outlined elsewhere. [On 1 February 2014, J. E. Tohline wrote: This particular system became of interest to me during discussions with Kundan Kadam about the relative stability of bipolytropes.]
Step 4: Throughout the core (<math>0 \le \chi \le \chi_i</math>)
Specify: <math>~P_0</math> and <math>\rho_0 ~\Rightarrow</math> |
|
|||
<math>~\rho</math> |
<math>~=</math> |
<math>~\rho_0</math> |
|
|
<math>~P</math> |
<math>~=</math> |
<math>P_0 - \frac{2}{3} \pi G \rho_0^2 r^2</math> |
<math>~=</math> |
<math>P_0 \biggl( 1 - \frac{2\pi}{3}\chi^2 \biggr)</math> |
<math>~r</math> |
<math>~=</math> |
<math>\biggl[ \frac{P_0}{G \rho_0^2} \biggr]^{1/2} \chi</math> |
<math>~=</math> |
<math>\biggl[ \frac{P_0}{G \rho_0^2} \biggr]^{1/2} \chi</math> |
<math>~M_r</math> |
<math>~=</math> |
<math>\frac{4\pi}{3} \rho_0 r^3</math> |
<math>~=</math> |
<math>\frac{4\pi}{3} \rho_0 \biggl[ \frac{P_0}{G \rho_0^2} \biggr]^{3/2} \chi^3 = \frac{4\pi}{3} \biggl[ \frac{P_0^3}{G^3 \rho_0^4} \biggr]^{1/2} \chi^3</math> |
Step 5: Interface Conditions
Specify: <math>~\chi_i</math> and <math>~\rho_e/\rho_0</math>, and demand … |
|
|||
<math>~P_{ei}</math> |
<math>~=</math> |
<math>~P_{ci}</math> |
<math>~=</math> |
<math>P_0 \biggl( 1 - \frac{2\pi}{3}\chi_i^2 \biggr)</math> |
Step 6: Envelope Solution (<math>~\chi > \chi_i</math>)
<math>~\rho</math> |
<math>~=</math> |
<math>~\rho_e</math> |
<math>~P</math> |
<math>~=</math> |
<math>P_{ei} + \biggl(\frac{2}{3} \pi G \rho_e\biggr) \biggl[ 2(\rho_0 - \rho_e) r_i^3\biggl( \frac{1}{r} - \frac{1}{r_i}\biggr) - \rho_e(r^2 - r_i^2) \biggr]</math> |
|
<math>~=</math> |
<math>P_{ei} + \frac{2}{3} \biggl(\frac{\rho_e}{\rho_0}\biggr) \biggl[ 2 \biggl(1 - \frac{\rho_e}{\rho_0} \biggr) \chi_i^3\biggl( \frac{1}{\chi} - \frac{1}{\chi_i}\biggr) - \frac{\rho_e}{\rho_0} (\chi^2 - \chi_i^2) \biggr]</math> |
<math>~M_r</math> |
<math>~=</math> |
<math>~~</math> |
Related Discussions
- Analytic solution with <math>n_c = 5</math> and <math>n_e=1</math>.
© 2014 - 2021 by Joel E. Tohline |