VisLunch/Fall2010

From VistrailsWiki
Jump to navigation Jump to search

Vis Lunch!

Where: Conference Room WEB 3760

When: Friday noon

This semester Paul Rosen and Kristi Potter will be responsible
for organizing the VisLunch sessions. Please feel free to contact them
for any question regarding VisLunch or for scheduling a talk:

Paul Rosen
prosen@sci.utah.edu

Kristi Potter
kpotter@sci.utah.edu

Information regarding the VisLunch sessions will posted on this wiki page (http://www.vistrails.org/index.php/VisLunch/Fall2010)

If you are unaware, VisLunch provides everyone at SCI a platform to present their research work and/or the latest developments in the community that could benefit the rest of us. In addition, the meeting is a great forum to give practice talks and improve your presentation skills. Plus there's _free_ pizza, and it's a nice opportunity to meet new people. Please let either Paul or Kristi know if

1.) You've submitted work to a research venue (e.g. recent conferences like Siggraph) and would like to share your ideas;

2.) You are preparing a submission to an upcoming venue (e.g. IEEE Vis, Siggraph Asia, etc.) and would like to get some feedback;

3.) Your work has been accepted to some venue and you are preparing a presentation you would like to practice; or

4.) You've recently read a new publication and are fascinated by the ideas and wish to share them with the rest of us.


Please consider volunteering to give a presentation at some point! We're hoping that there will be enough presenters so that we don't cancel any future weeks.


Sessions

Date Presenter Topic
September 03 Kristi Potter Organization and Introductions
Yi Yang ViSSaAn: Visual Support for Safety Analysis
September 10 Dav de St. Germain Developer's Symposium II
September 17 Jens Krueger Work at the Interactive Visualization and Data Analysis Group
October 1 Liang Zhou Tensor Product Transfer Functions Using Statistical and Occlusion Metrics
October 8 Sam Gerber Vis Practice Talk: Visual Exploration of High Dimensional Scalar Functions
Claurissa Tuttle InfoVis Practice Talk: PedVis: A Structured, Space Efficient Technique for Pedigree Visualization
October 15 Fall Break NO VisLunch
October 22 Allen Sanderson Vis Practice Talk: Analysis of Recurrent Patterns in Toroidal Magnetic Fields
Roni Choudhury Vis PhD Colloquim Practice Talk: Application-Specific Visualization for Memory Reference Traces
October 29 VisWeek 2010 NO VisLunch
November 5 Speaker TBA
November 12 Speaker TBA
November 19 Speaker TBA
November 26 Thanksgiving NO VisLunch
December 3 Speaker TBA
December 10 Speaker TBA

September 3: Organization and Introductions / Yi Yang

Organization and Introductions

Quick discussion of vis lunch and introductions. Students attending should plan on giving a brief (5 minutes or so) oral description of what they have done with the last 3 months of their lives.

Speaker: Yi Yang

ViSSaAn: Visual Support for Safety Analysis Safety of technical systems are becoming more and more important nowadays. Fault trees, component fault trees, and minimal cut sets are usually used to attack the problems of assessing safety-critical systems. A visualization system named ViSSaAn (Visual Support for Safety Analysis), consisting of a matrix view, is proposed that supports an efficient safety analysis based on the information from these techniques. Interactions such as zooming and grouping are provided to support the task of finding the safety problems from the analysis information.

September 10: Developer's Symposium II

Speakers:

  • C-SAFE [Davison de St. Germain, John Schmidt]
  • SDC (Software Development Center) [Steve Callahan, John Schreiner]
  • Backscatter CT simulation, Non-rigid image registration [Yongsheng Pan]
  • Longitudinal data analysis [Stanley Durrleman, Marcel Prastawa]
  • FEBio/PreView/PostView [Steve Maas]

September 17: Work at the Interactive Visualization and Data Analysis Group

Speaker: Jens Krueger

What's Jens' been up to in the last year and what are possibilities of collaboration?

October 01: Tensor Product Transfer Functions Using Statistical and Occlusion Metrics

Speaker: Liang Zhou

Direct volume rendering has been an active area of research for over two decades. While impressive results are possible, transfer function design remains a difficult task. Current methods, the traditional 1D and 2D transfer functions, are not always effective for all datasets. In this paper, we present a novel tensor product style 3D transfer function which can provide more specificity for data classification. Our new transfer function field is comprised of a 2D statistical transfer function with occlusion information as the third axis. The 2D statistical transfer function space is computed via an adaptive method, the occlusion information is computed as an edge preserving mean value on the volume. Both metrics are precomputed on GPUs in seconds providing for interactivity. Additionally, we present a novel user interface for manipulating the 3D transfer function which allows the user to easily explore the 3D tensor product transfer function space. We compare the new method to previous 2D gradient magnitude, 2D occlusion spectrum and 2D statistical transfer functions to demonstrate its usefulness.

October 08: Vis Practice Talks

Speaker: Sam Gerber

Vis Paper Practice Talk: Visual Exploration of High Dimensional Scalar Functions

An important goal of scientific data analysis is to understand the behavior of a system or process based on a sample of the system. In many instances it is possible to observe both input parameters and system outputs, and characterize the system as a high-dimensional function. Such data sets arise, for instance, in large numerical simulations, as energy landscapes in optimization problems, or in the analysis of image data relating to biological or medical parameters. This paper proposes an approach to analyze and visualizing such data sets. The proposed method combines topological and geometric techniques to provide interactive visualizations of discretely sampled high-dimensional scalar fields. The method relies on a segmentation of the parameter space using an approximate Morse-Smale complex on the cloud of point samples. For each crystal of the Morse-Smale complex, a regression of the system parameters with respect to the output yields a curve in the parameter space. The result is a simplified geometric representation of the Morse-Smale complex in the high dimensional input domain. Finally, the geometric representation is embedded in 2D, using dimension reduction, to provide a visualization platform. The geometric proper ties of the regression curves enable the visualization of additional information about each crystal such as local and global shape, width, length, and sampling densities. The method is illustrated on several synthetic examples of two dimensional functions. Two use cases, using data sets from the UCI machine learning repository, demonstrate the utility of the proposed approach on real data. Finally, in collaboration with domain experts the proposed method is applied to two scientific challenges. The analysis of parameters of climate simulations and their relationship to predicted global energy flux and the concentrations of chemical species in a combustion simulation and their integration with temperature.


Speaker: Claurissa Tuttle

InfoVis Paper Practice Talk: PedVis: A Structured, Space Efficient Technique for Pedigree Visualization

Public genealogical databases are becoming increasingly populated with historical data and records of the current population’s ancestors. As this increasing amount of available information is used to link individuals to their ancestors, the resulting trees become deeper and more dense, which justifies the need for using organized, space-efficient layouts to display the data. Existing layouts are often only able to show a small subset of the data at a time. As a result, it is easy to become lost when navigating through the data or to lose sight of the overall tree structure. On the contrary, leaving space for unknown ancestors allows one to better understand the tree’s structure, but leaving this space becomes expensive and allows fewer generations to be displayed at a time. In this work, we propose that the H-tree based layout be used in genealogical software to display ancestral trees. We will show that this layout presents an increase in the number of displayable generations, presents an increase in space-efficiency, provides a nicely arranged, symmetrical, intuitive and organized fractal structure, increases the user’s ability to understand and navigate through the data, and accounts for the visualization requirements necessary for displaying such trees. Finally, the results of a user-study indicate high potential for user acceptance of the new layout.

October 15: Fall Break - NO Vis Lunch

October 22: Vis Practice Talks

Speaker: Allen Sanderson

Vis Paper Practice Talk: Analysis of Recurrent Patterns in Toroidal Magnetic Fields

Abstract: In the development of magnetic confinement fusion which will potentially be a future source for low cost power, physicists must be able to analyze the magnetic field that confines the burning plasma. While the magnetic field can be described as a vector field, traditional techniques for analyzing the field’s topology cannot be used because of its Hamiltonian nature. In this paper we describe a technique developed as a collaboration between physicists and computer scientists that determines the topology of a toroidal magnetic field using fieldlines with near minimal lengths. More specifically, we analyze the Poincare map of the sampled fieldlines in a Poincare section including identifying critical points and other topological features of interest to physicists. The technique has been deployed into an interactive parallel visualization tool which physicists are using to gain new insight into simulations of magnetically confined burning plasmas.


Speaker: Roni Choudhury

Vis PhD Colloquim Practice Talk: Application-Specific Visualization for Memory Reference Traces

Abstract: Memory performance is an important component of high-performance software. As CPUs have been showing faster increases in speed than main memory in the last several years, and now we are seeing more and more CPU cores bundled into computing systems, this speed difference has meant that memory performance has been more and more critical to achieving high performance. One way to investigate memory performance is through the use of *memory reference traces*, which are records of the memory accesses performed by a program at runtime. The traditional use for reference traces is to perform cache simulation, producing overall cache statistics from which some insight about program performance can be gained.

In this talk I will describe the Memory Trace Visualizer (MTV), a novel system that takes as input memory reference traces, and produces visualizations representing how the program accessed memory, and how those accesses affect a cache of the user's design. The purpose of MTV is to investigate memory behavior and performance in real programs, and I will discuss the motivation behind it and its history, including current work in which I design application-specific visualizations with the goal of combining reference trace data with traditional scientific visualization in order to gain insight into how the structure of a particular problem may affect its memory performance.

October 29: VisWeek 2010 - no Vis Lunch

http://vis.computer.org/VisWeek2010/

November 05: TBD

Speaker:

November 12: TBD

Speaker:

November 19: TBD

Speaker:

November 26: Thanksgiving - no Vis Lunch

December 03: TBD

Speaker:

December 10: TBD

Speaker: