User:Tohline/Appendix/Ramblings/Radiation/SummaryScalings
| Tiled Menu | Tables of Content | Banner Video | Tohline Home Page | |
Summary of Scalings
On an accompanying Wiki page we have explained how to interpret the set of dimensionless units that Dominic Marcello is using in his rad-hydrocode. The following tables summarize some of the mathematical relationships that have been derived in that accompanying discussion.
General Relation |
Case A: |
||||||||||||||
| |||||||||||||||
where: |
<math> \mu_e^2 M_\mathrm{Ch} = 1.14169\times 10^{34}~\mathrm{g} </math>; <math> \mu_e \ell_\mathrm{Ch} = 7.71311\times 10^{8}~\mathrm{cm} </math>; <math> \mu_e^{1/2} t_\mathrm{Ch} = 3.90812~\mathrm{s} </math> |
||||||||||||||
Case A <math>\Rightarrow ~~~\tilde{g} = 1</math>; <math>\tilde{c} = 198</math>; <math>\tilde{r} = 0.44</math>; <math>\tilde{a} = 0.044</math>; <math>\bar\mu = 4/3</math>; <math>\rho_\mathrm{max} = 1</math>; <math>(\Delta R) = \frac{\pi}{128}</math> |
Now let's convert all of the system parameters listed on the accompanying page that details the properties of various polytropic binary systems.
Properties of (<math>n=3/2</math>) Polytropic Binary Systems |
||||||||||||||
Q071 |
Binary System |
Accretor |
Donor |
|||||||||||
|
<math>q</math> |
<math>M_\mathrm{tot}</math> |
<math>a</math> |
<math>P = \frac{2\pi}{\Omega}</math> |
<math>J_\mathrm{tot}</math> |
<math>M_a</math> |
<math>\rho^\mathrm{max}_a</math> |
<math>K^a_{3/2}</math> |
<math>R_a</math> |
<math>M_d</math> |
<math>\rho^\mathrm{max}_d</math> |
<math>K^d_{3/2}</math> |
<math>R_d</math> |
<math>f_\mathrm{RL}</math> |
SCF units |
0.70000 |
0.02371 |
0.83938 |
31.19 |
<math>8.938\times 10^{-4}</math> |
0.013945 |
1.0000 |
0.02732 |
0.2728 |
0.009761 |
0.6077 |
0.02512 |
0.2888 |
0.998 |
conversion2 |
|
<math> \biggl( \frac{\ell_\mathrm{code}}{\ell_\mathrm{SCF}} \biggr)^3 </math> |
<math> \biggl( \frac{\ell_\mathrm{code}}{\ell_\mathrm{SCF}} \biggr) </math> |
|
<math> \biggl( \frac{\ell_\mathrm{code}}{\ell_\mathrm{SCF}} \biggr)^5 </math> |
<math> \biggl( \frac{\ell_\mathrm{code}}{\ell_\mathrm{SCF}} \biggr)^3 </math> |
|
<math> \biggl( \frac{\ell_\mathrm{code}}{\ell_\mathrm{SCF}} \biggr)^2 </math> |
<math> \biggl( \frac{\ell_\mathrm{code}}{\ell_\mathrm{SCF}} \biggr) </math> |
<math> \biggl( \frac{\ell_\mathrm{code}}{\ell_\mathrm{SCF}} \biggr)^3 </math> |
|
<math> \biggl( \frac{\ell_\mathrm{code}}{\ell_\mathrm{SCF}} \biggr)^2 </math> |
<math> \biggl( \frac{\ell_\mathrm{code}}{\ell_\mathrm{SCF}} \biggr) </math> |
|
Rad-Hydro units |
0.70000 |
0.6847 |
2.5752 |
31.19 |
0.24293 |
0.4027 |
1.0000 |
0.2571 |
0.8369 |
0.28187 |
0.6077 |
0.2364 |
0.88603 |
0.998 |
cgs units |
0.70000 |
<math>1.924\times 10^{33}</math> |
<math>2.106\times 10^{10}</math> |
<math>1.687\times 10^{3}</math> |
<math>1.924\times 10^{33}</math> |
<math>1.132\times 10^{33}</math> |
<math>5.136\times 10^{3}</math> |
|
<math>6.845\times 10^{9}</math> |
<math>7.921\times 10^{32}</math> |
<math>3.121\times 10^{3}</math> |
|
<math>7.247\times 10^{9}</math> |
0.996 |
Other units |
|
<math>0.967 M_\odot</math> |
<math>0.303 R_\odot</math> |
<math>28.1~\mathrm{min}</math> |
|
<math>0.569 M_\odot</math> |
|
|
<math>0.0984 R_\odot</math> |
<math>0.398 M_\odot</math> |
|
|
<math>0.1042 R_\odot</math> |
|
1Model Q07 (<math>q = 0.700</math>): Drawn from the first page of the accompanying PDF document. NOTE: In this PDF document, Roche-lobe volumes appear to be too large by factor of 2. |
Here are some additional useful relations:
General Relation |
Case A: |
||||||||||||||||||
| |||||||||||||||||||
Case A <math>\Rightarrow ~~~\tilde{g} = 1</math>; <math>\tilde{c} = 198</math>; <math>\tilde{r} = 0.44</math>; <math>\tilde{a} = 0.044</math>; <math>\bar\mu = 4/3</math>; <math>\rho_\mathrm{max} = 1</math>; <math>(\Delta R) = \frac{\pi}{128}</math> |
Combining the above Case A relations with the RadHydro-code properties of the Q0.7 polytropic binary that serves as an initial condition for Dominic's simulations, we conclude the following:
(1) The system will experience "super-Eddington" accretion (i.e., <math>f_\mathrm{Edd} > 1</math>) when
<math> [\dot{M}]_\mathrm{code} > 1.3\times 10^{-10} . </math>
(2) The mean-free-path, <math>\ell_\mathrm{mfp}</math>, of a photon will be less than one grid cell <math>(\Delta R)_\mathrm{code}</math> when
<math> [\rho]_\mathrm{code} > \rho_\mathrm{threshold} = 5\times 10^{-12} . </math>
(3) The system is weakly relativistic because,
<math> \frac{v_\mathrm{circ}}{c} = 0.0026 . </math>
© 2014 - 2021 by Joel E. Tohline |