User:Tohline/Appendix/Ramblings/T3CharacteristicVector

From VistrailsWiki
< User:Tohline‎ | Appendix/Ramblings
Revision as of 23:06, 6 June 2010 by Tohline (talk | contribs) (Two views of Equation of Motion)
Jump to navigation Jump to search
Whitworth's (1981) Isothermal Free-Energy Surface
|   Tiled Menu   |   Tables of Content   |  Banner Video   |  Tohline Home Page   |

Characteristic Vector for T3 Coordinates

Let's apply Jay's Characteristic Vector approach to Joel's T3 Coordinate System.

Brute Force Manipulations

Starting from Equation CV.02, and plugging in expressions for various logarithmic derivatives of the T3 scale factors, we obtain,

 

<math> \frac{\dot{C}_2}{C_2} \biggl(\frac{d \ln{\lambda}_2}{dt}\biggr)^{-1} </math>

<math> = </math>

<math> \biggl(\frac{h_1 \dot{\lambda}_1}{h_2 \dot{\lambda}_2}\biggr)^2 \frac{\partial \ln h_1}{\partial\ln\lambda_2} + \frac{\partial \ln h_2}{\partial \ln\lambda_2} </math>

 

 

<math> = </math>

<math> \biggl(\frac{h_1 \dot{\lambda}_1}{h_2 \dot{\lambda}_2}\biggr)^2 \biggl( \frac{q h_1 h_2 \lambda_2}{\lambda_1 } \biggr)^2 - ( qh_1^2 )^2 </math>

 

 

<math> = </math>

<math> \biggl[ (h_1 \dot{\lambda}_1)^2 ( q h_1 h_2 \lambda_2 )^2 - (h_2 \dot{\lambda}_2)^{2} ( qh_1^2 \lambda_1 )^2 \biggr](h_2 \lambda_1 \dot{\lambda}_2)^{-2} </math>

 

 

<math> = </math>

<math> \biggl[ \biggl(\frac{\dot{\lambda}_1}{\lambda_1}\biggr)^2 - \biggl( \frac{\dot{\lambda}_2}{\lambda_2} \biggr)^2 \biggr]( q h_1^2 h_2 \lambda_1 \lambda_2 )^2 (h_2 \lambda_1 \dot{\lambda}_2)^{-2} </math>

 

 

<math> = </math>

<math> \biggl[ \frac{\dot{\lambda}_1}{\lambda_1} + \frac{\dot{\lambda}_2}{\lambda_2} \biggr] \biggl[ \frac{\dot{\lambda}_1}{\lambda_1} - \frac{\dot{\lambda}_2}{\lambda_2} \biggr] \biggl( \frac{ q h_1^2 \lambda_2}{\dot{\lambda}_2} \biggr)^2 </math>

<math>\Rightarrow</math>   

<math> \frac{\dot{C}_2}{C_2} \biggl(\frac{d \ln{\lambda}_2}{dt}\biggr) </math>

<math> = </math>

<math> \biggl[ \frac{\dot{\lambda}_1}{\lambda_1} + \frac{\dot{\lambda}_2}{\lambda_2} \biggr] \biggl[ \frac{\dot{\lambda}_1}{\lambda_1} - \frac{\dot{\lambda}_2}{\lambda_2} \biggr] ( q h_1^2 )^2 </math>

 

 

<math> = </math>

<math> \biggl[ \frac{\dot{\lambda}_1}{\lambda_1} + \frac{\dot{\lambda}_2}{\lambda_2} \biggr] \frac{d\ln h_2}{dt} </math>

 

 

<math> = </math>

<math> \biggl[ \frac{\ln(\lambda_1 \lambda_2)}{dt} \biggr] \frac{d\ln h_2}{dt} </math>

Two Views of Equation of Motion

Christoffel Symbol Formalism

The second component of the equation of motion can be obtained by setting <math>i = 2</math> and <math>C_i = 1</math> in Equation CV.01, specifically,

<math> \frac{d(h_2^2 \dot{\lambda}_2)}{dt} </math>

<math>=</math>

<math> {h_k}^2 \Gamma^k_{2j} \dot{\lambda}_j \dot{\lambda}_k </math>

<math> = {h_1}^2 \dot{\lambda}_1 \biggr[ \Gamma^1_{21} \dot{\lambda}_1 + \Gamma^1_{22} \dot{\lambda}_2 \biggl] + {h_2}^2 \dot{\lambda}_2 \biggr[ \Gamma^2_{21} \dot{\lambda}_1 + \Gamma^2_{22} \dot{\lambda}_2 \biggl] </math>

 

<math>=</math>

<math> {h_1}^2 \dot{\lambda}_1 \biggr[ \biggl( \frac{1}{h_1} \frac{\partial h_1}{\partial\lambda_2} \biggr) \dot{\lambda}_1 - \biggl( \frac{h_2}{h_1^2} \frac{\partial h_2}{\partial\lambda_1} \biggr) \dot{\lambda}_2 \biggl] + {h_2}^2 \dot{\lambda}_2 \biggr[ \biggl( \frac{1}{h_2} \frac{\partial h_2}{\partial\lambda_1} \biggr) \dot{\lambda}_1 + \biggl( \frac{1}{h_2} \frac{\partial h_2}{\partial\lambda_2} \biggr) \dot{\lambda}_2 \biggl] </math>

 

<math>=</math>

<math> \biggl( h_1 \frac{\partial h_1}{\partial\lambda_2} \biggr) \dot{\lambda}_1^2 + \biggl( h_2 \frac{\partial h_2}{\partial\lambda_2} \biggr) \dot{\lambda}_2^2 </math>


 

Whitworth's (1981) Isothermal Free-Energy Surface

© 2014 - 2021 by Joel E. Tohline
|   H_Book Home   |   YouTube   |
Appendices: | Equations | Variables | References | Ramblings | Images | myphys.lsu | ADS |
Recommended citation:   Tohline, Joel E. (2021), The Structure, Stability, & Dynamics of Self-Gravitating Fluids, a (MediaWiki-based) Vistrails.org publication, https://www.vistrails.org/index.php/User:Tohline/citation