User:Tohline/Appendix/Ramblings/RadiationHydro

From VistrailsWiki
Jump to navigation Jump to search


Radiation-Hydrodynamics

Whitworth's (1981) Isothermal Free-Energy Surface
|   Tiled Menu   |   Tables of Content   |  Banner Video   |  Tohline Home Page   |

Principal Governing Equations

Ignoring the Effects of Magnetic Fields

First, referencing §2 of J. C. Hayes et al. (2006, ApJS, 165, 188 - 228) — alternatively see §2.1 of D. C. Marcello & J. E. Tohline (2012, ApJS, 199, id. 35, 29 pp) — we see that the set of principal governing equations that is typically used in the astrophysics community to include the effects of radiation on self-gravitating fluid flows includes the,

Poisson Equation

LSU Key.png

<math>\nabla^2 \Phi = 4\pi G \rho</math>

Hayes et al. (2006), p. 190, Eq. (15)

the,

Continuity Equation

LSU Key.png

<math>\frac{d\rho}{dt} + \rho \nabla \cdot \vec{v} = 0</math>

and — ignoring magnetic fields — a modified version of the,

Lagrangian Representation
of the Euler Equation,

<math>~\frac{d\vec{v}}{dt}</math>

<math>~=</math>

<math>~ - \frac{1}{\rho}\nabla P - \nabla \Phi + \frac{1}{\rho}\biggl(\frac{\chi}{c}\biggr) \vec{F} \, , </math>

plus the following pair of additional energy-conservation-based dynamical equations:

<math>~\rho \frac{d}{dt} \biggl( \frac{e}{\rho}\biggr) + P\nabla \cdot \vec{v} </math>

<math>~=</math>

<math>~ c\kappa_E E_\mathrm{rad} - 4\pi \kappa_p B_p \, , </math>

<math>~\rho \frac{d}{dt} \biggl( \frac{E_\mathrm{rad}}{\rho}\biggr)</math>

<math>~=</math>

<math>~ - \biggl[ \nabla \cdot \vec{F} + \bold{P}_\mathrm{st}:\nabla{\vec{v}} + c\kappa_E E_\mathrm{rad} - 4\pi \kappa_p B_p \biggr] \, , </math>

where, in this last expression, <math>~\bold{P}_\mathrm{st}</math> is the radiation stress tensor.

By combining it with the continuity equation and switching to a material derivative notation, the left-hand side of this last expression can be rewritten in a form that matches equation (4) of Marcello & J. E. Tohline (2012), namely,

<math>~\rho \frac{d}{dt} \biggl( \frac{E_\mathrm{rad}}{\rho}\biggr)</math>

<math>~=</math>

<math>~ \frac{dE_\mathrm{rad}}{dt} - E_\mathrm{rad}~\frac{d\rho}{dt} </math>

Optically Thick Regime

In the optically thick regime, the following conditions hold:

<math>~c\kappa_E E_\mathrm{rad}</math>

<math>~\rightarrow</math>

<math>~4\pi \kappa_p B_p \, ,</math>

<math>~E_\mathrm{rad}</math>

<math>~\rightarrow</math>

<math>~aT^4 \, ,</math>

<math>~\biggl(\frac{\chi}{c}\biggr) \vec{F}</math>

<math>~\rightarrow</math>

<math>~- \nabla \biggl(\frac{aT^4}{3} \biggr) \, ,</math>

<math>~ \vec{\bold{P}}:\nabla{\vec{v}}</math>

<math>~\rightarrow</math>

<math>~\frac{E_\mathrm{rad}}{3} \nabla \cdot \vec{v} \, .</math>

Related Discussions


Whitworth's (1981) Isothermal Free-Energy Surface

© 2014 - 2021 by Joel E. Tohline
|   H_Book Home   |   YouTube   |
Appendices: | Equations | Variables | References | Ramblings | Images | myphys.lsu | ADS |
Recommended citation:   Tohline, Joel E. (2021), The Structure, Stability, & Dynamics of Self-Gravitating Fluids, a (MediaWiki-based) Vistrails.org publication, https://www.vistrails.org/index.php/User:Tohline/citation