User:Tohline/Appendix/Ramblings/InsideOut
Looking Outward, From Inside a Black Hole
| Tiled Menu | Tables of Content | Banner Video | Tohline Home Page | |
The relationship between the mass, <math>~M</math>, and radius, <math>~R</math>, of a black hole is,
<math>~\frac{GM}{c^2 R}</math> |
<math>~=</math> |
<math>~1 \, .</math> |
The mean density of matter inside a black hole of mass <math>~M</math> is, therefore,
<math>~\bar\rho</math> |
<math>~=</math> |
<math>~ \frac{3M}{4\pi R^3} </math> |
|
<math>~=</math> |
<math>~ \frac{3M}{4\pi} \biggl[ \frac{GM}{c^2}\biggr]^{-3} </math> |
|
<math>~=</math> |
<math>~ \frac{3c^6}{4\pi G^3 M^2} \, . </math> |
Leading Questions
See Also
- Lord Rayleigh (1917, Proc. Royal Society of London. Series A, 93, 148-154) — On the Dynamics of Revolving Fluids
© 2014 - 2021 by Joel E. Tohline |