Given a barotropic equation of state, <math>~P(\rho)</math>, solve the equation of
Hydrostatic Balance
|
<math>~\frac{dP}{dr} = - \frac{GM_r \rho}{r^2}</math>
|
for the radial density distribution, <math>~\rho(r)</math>.
|
|
Multiply the hydrostatic-balance equation through by <math>~rdV</math> and integrate over the volume:
<math>~0</math>
|
<math>~=</math>
|
<math>~-\int_0^R r\biggl(\frac{dP}{dr}\biggr)dV - \int_0^R r\biggl(\frac{GM_r \rho}{r^2}\biggr)dV</math>
|
|
<math>~=</math>
|
<math>~-\int_0^R 4\pi r^3 \biggl(\frac{dP}{dr}\biggr) dr - \int_0^R \biggl(\frac{GM_r}{r}\biggr)dM_r</math>
|
|
<math>~=</math>
|
<math>~-\int_0^R 4\pi r^3 dP + W_\mathrm{grav}</math>
|
|
<math>~=</math>
|
<math>~\int_0^R 4\pi \biggl[ 3r^2 P dr - d(r^3P)\biggr] + W_\mathrm{grav}</math>
|
|
|
Given a barotropic equation of state, <math>~P(\rho)</math>, solve the equation of
Hydrostatic Balance
|
<math>~\frac{dP}{dr} = - \frac{GM_r \rho}{r^2}</math>
|
for the radial density distribution, <math>~\rho(r)</math>.
|
|