User:Tohline/SSC/Stability/BiPolytrope0 0

From VistrailsWiki
Jump to navigation Jump to search

Radial Oscillations of a Zero-Zero Bipolytrope

This is a chapter that summarizes an accompanying, detailed derivation.

Whitworth's (1981) Isothermal Free-Energy Surface
|   Tiled Menu   |   Tables of Content   |  Banner Video   |  Tohline Home Page   |

Two Separate Eigenvectors

Core

<math>~\alpha_c \equiv 3-\frac{4}{\gamma_c}</math>
<math>~g = \frac{1}{1+2q^3}</math>


Mode

Core Eigenvector

<math>~\frac{3\omega_\mathrm{core}^2}{2\pi \gamma_c G \rho_c} = 2\alpha_c + 2j(2j+5)</math>

<math>~j=0 </math>

<math>~x_\mathrm{core} = a_0 </math>

<math>~6-8/\gamma_c</math>

<math>~j=1 </math>

<math>~x_\mathrm{core} = a_0 \biggl[ 1 - \frac{7}{5}\biggr(\frac{\xi^2}{g^2}\biggr) \biggr]</math>

<math>~20-8/\gamma_c</math>

<math>~j=2 </math>

<math>~x_\mathrm{core} = a_0 \biggl[ 1 - \frac{18}{5}\biggr(\frac{\xi^2}{g^2}\biggr) + \frac{99}{35}\biggr(\frac{\xi^2}{g^2}\biggr)^2 \biggr]</math>

<math>~42-8/\gamma_c</math>

Related Discussions

Whitworth's (1981) Isothermal Free-Energy Surface

© 2014 - 2021 by Joel E. Tohline
|   H_Book Home   |   YouTube   |
Appendices: | Equations | Variables | References | Ramblings | Images | myphys.lsu | ADS |
Recommended citation:   Tohline, Joel E. (2021), The Structure, Stability, & Dynamics of Self-Gravitating Fluids, a (MediaWiki-based) Vistrails.org publication, https://www.vistrails.org/index.php/User:Tohline/citation