User:Tohline/SSC/Virial/Polytropes
Virial Equilibrium of Adiabatic Spheres
| Tiled Menu | Tables of Content | Banner Video | Tohline Home Page | |
Review
Adopted Normalizations
In an introductory discussion of the virial equilibrium structure of spherically symmetric configurations, we adopted the following physical parameter normalizations for adiabatic systems.
Adopted Normalizations for Adiabatic Systems | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
Virial Equilibrium
Also in our introductory discussion — see especially the section titled, Energy Extrema — we deduced that an adiabatic system's dimensionless equilibrium radius,
<math>~\chi_\mathrm{eq} \equiv \frac{R_\mathrm{eq}}{R_\mathrm{norm}} \, ,</math>
is given by the root(s) of the following equation:
<math> 2C \chi_\mathrm{eq}^{-2} + ~3 B\chi_\mathrm{eq}^{3 -3\gamma_g} -~3A\chi_\mathrm{eq}^{-1} -~ 3D \chi_\mathrm{eq}^3 = 0 \, , </math>
where the definitions of the various coefficients are,
<math>~A</math> |
<math>~\equiv</math> |
<math>\frac{1}{5} \cdot \frac{\mathfrak{f}_W}{\mathfrak{f}_M^2} \, ,</math> |
<math>~B</math> |
<math>~\equiv</math> |
<math> \biggl( \frac{4\pi}{3} \biggr)^{1-\gamma_g} \frac{\mathfrak{f}_A}{\mathfrak{f}_M^{\gamma_g}} \, , </math> |
<math>~C</math> |
<math>~\equiv</math> |
<math> \frac{3\cdot 5}{2^4 \pi} \biggl[ \frac{J^2 c_\mathrm{norm}^2}{G^2 M_\mathrm{tot}^4} \biggr] \cdot \frac{\mathfrak{f}_M}{\mathfrak{f}_T} \, , </math> |
<math>~D</math> |
<math>~\equiv</math> |
<math> \biggl( \frac{4\pi}{3} \biggr) \frac{P_e}{P_\mathrm{norm}} \, . </math> |
(The dimensionless structural form factors, <math>~\mathfrak{f}_i,</math> that appear in these expressions are defined in our accompanying introductory discussion and are discussed further, below.) Once the pressure exerted by the external medium (<math>~P_e</math>), and the configuration's mass (<math>~M_\mathrm{tot}</math>), angular momentum (<math>~J</math>), and specific entropy (via <math>~K</math>) have been specified, the values of all of the coefficients are known and <math>~\chi_\mathrm{eq}</math> can be determined.
Isolated Nonrotating Adiabatic Configuration
For a nonrotating configuration <math>~(C=J=0)</math> that is not influenced by the effects of a bounding external medium <math>~(D=P_e = 0)</math>, the statement of virial equilibrium is,
<math> 3 B\chi_\mathrm{eq}^{3 -3\gamma_g} -~3A\chi_\mathrm{eq}^{-1} = 0 \, . </math>
Hence, one equilibrium state exists for each value of <math>\gamma_g</math> and it occurs where,
<math>~R_\mathrm{eq} = R_\mathrm{norm} \chi_\mathrm{eq} </math> |
<math>~=</math> |
<math> R_\mathrm{norm} \biggl[ \frac{A}{B} \biggr]^{1/(4-3\gamma_g)} </math> |
|
<math>~=</math> |
<math> R_\mathrm{norm} \biggl[ \frac{1}{5} \biggl( \frac{4\pi}{3} \biggr)^{\gamma_g-1} \frac{\mathfrak{f}_W}{\mathfrak{f}_A \mathfrak{f}_M^{2-\gamma_g}} \biggr]^{1/(4-3\gamma_g)} </math> |
|
<math>~=</math> |
<math> \biggl[ \frac{1}{5} \biggl( \frac{4\pi}{3} \biggr)^{\gamma_g-1} \frac{\mathfrak{f}_W}{\mathfrak{f}_A \mathfrak{f}_M^{2-\gamma_g}} \cdot \frac{GM_\mathrm{tot}^{2-\gamma_g}}{K} \biggr]^{1/(4-3\gamma_g)} \, . </math> |
Accordingly, the equilibrium mass-radius relationship for adiabatic configurations of a given specific entropy is,
<math> M_\mathrm{tot}^{(\gamma_g - 2)} \propto R_\mathrm{eq}^{(3\gamma_g -4)} \, . </math>
We see that, for <math>~\gamma_g=2</math>, the equilibrium radius depends only on the specific entropy of the gas and is independent of the configuration's mass. Conversely, for <math>~\gamma_g = 4/3</math>, the mass of the configuration is independent of the radius. For <math>~\gamma_g > 2</math> or <math>~\gamma_g < 4/3</math>, configurations with larger mass (but the same specific entropy) have larger equilibrium radii. However, for <math>~\gamma_g</math> in the range, <math>~2 > \gamma_g > 4/3</math>, configurations with larger mass have smaller equilibrium radii. (Note that the related result for isothermal configurations can be obtained by setting <math>~\gamma_g = 1</math> in this adiabatic solution, because <math>~K = c_s^2</math> when <math>~\gamma_g = 1</math>.)
Role of Structural Form Factors
When employing a virial analysis to determine the radius of an equilibrium configuration, it is customary to set the structural form factors, <math>~\mathfrak{f}_M</math>, <math>~\mathfrak{f}_W</math> and <math>~\mathfrak{f}_A</math>, to unity and accept that the expression derived for <math>~R_\mathrm{eq}</math> is an estimate of the configuration's radius that is good to within a factor of order unity. As has been demonstrated in our related discussion of the equilibrium of uniform-density spheres, these form factors can be evaluated if/when the internal structural profile of an equilibrium configuration is known from a complementary detailed force-balance analysis. In the case being discussed here of isolated, spherical polytropes, solutions to the,
Lane-Emden Equation
<math>~\frac{1}{\xi^2} \frac{d}{d\xi}\biggl( \xi^2 \frac{d\Theta_H}{d\xi} \biggr) = - \Theta_H^n</math> |
can provide the desired internal structural information. Here we draw on Chandrasekhar's [C67] discussion of the structure of spherical polytropes to show precisely how our structural form factors can be expressed in terms of the Lane-Emden function, <math>~\Theta_H</math>, dimensionless radial coordinate, <math>~\xi</math>, and the function derivative, <math>~\Theta^' = d\Theta_H/d\xi</math>.
Mass
We note, first, that Chandrasekhar [C67] — see his Equation (78) on p. 99 — presents the following expression for the mean-to-central density ratio:
<math>~\frac{\bar\rho}{\rho_c}</math> |
<math>~=</math> |
<math>~ \biggl[ - \frac{3\Theta^'}{\xi} \biggr]_{\xi_1} \, ,</math> |
where the notation at the bottom of the closing square bracket means that everything inside the square brackets should be, "evaluated at the surface of the configuration," that is, at the radial location, <math>~\xi_1</math>, where the Lane-Emden function, <math>~\Theta_H(\xi)</math>, first goes to zero. But, as we pointed out when defining the structural form factors, the form factor associated with the configuration mass, <math>~\mathfrak{f}_M</math>, is equivalent to the mean-to-central density ratio. We conclude, therefore, that,
<math>~\mathfrak{f}_M</math> |
<math>~=</math> |
<math>~ \biggl[ - \frac{3\Theta^'}{\xi} \biggr]_{\xi_1} \, .</math> |
Gravitational Potential Energy
Second, we note that Chandrasekhar's [C67] expression for the gravitational potential energy — see his Equation (90), p. 101 — is,
<math>~-W</math> |
<math>~=</math> |
<math>~\frac{3}{5-n} \biggl( \frac{GM^2}{R} \biggr) \, ,</math> |
whereas our analogous expression is,
<math>~-W_\mathrm{grav}</math> |
<math>~=</math> |
<math>~\frac{3}{5} \biggl( \frac{GM_\mathrm{tot}^2}{R_\mathrm{eq}} \biggr) \frac{\mathfrak{f}_W}{\mathfrak{f}_M^2} \, .</math> |
We conclude, therefore, that,
<math>~\frac{\mathfrak{f}_W}{\mathfrak{f}_M^2} </math> |
<math>~=</math> |
<math>~\frac{5}{5-n} </math> |
<math>\Rightarrow ~~~~\mathfrak{f}_W </math> |
<math>~=</math> |
<math>~\frac{3^2\cdot 5}{5-n} \biggl[ \frac{\Theta^'}{\xi} \biggr]^2_{\xi_1} \, .</math> |
Mass-Radius Relationship
Third, Chandrasekhar [C67] shows — see his Equation (72), p. 98 — that the general mass-radius relationship for isolated spherical polytropes is,
<math>~GM^{(n-1)/n} R^{(3-n)/n}</math> |
<math>~=</math> |
<math> ~\frac{(n+1)K}{(4\pi)^{1/n}} \biggl[ - \xi^{(n+1)/(n-1)} \frac{d\Theta_H}{d\xi} \biggr]^{(n-1)/n}_{\xi=\xi_1} \, , </math> |
which we choose to rewrite as,
<math>~4\pi \biggl( \frac{G}{K}\biggr)^n M^{(n-1)} R^{(3-n)}</math> |
<math>~=</math> |
<math> ~(n+1)^n\biggl[ \xi^{(n+1)} (-\Theta^')^{(n-1)}\biggr]_{\xi=\xi_1} </math> |
|
<math>~=</math> |
<math> - \biggl( \frac{\xi}{\Theta^'} \biggr)_{\xi=\xi_1} \biggl[ (n+1) \xi ~(-\Theta^') \biggr]^n_{\xi=\xi_1} \, . </math> |
By comparison, if we set <math>~\gamma_g = (1+1/n)</math> in the expression for the equilibrium radius that has been derived, above, from an analysis of extrema in the free energy function, we obtain,
<math>~4\pi \biggl( \frac{G}{K}\biggr)^n M^{(n-1)} R_\mathrm{eq}^{(3-n)}</math> |
<math>~=</math> |
<math> ~\frac{3}{\mathfrak{f}_M} \biggl( \frac{5\mathfrak{f}_A \mathfrak{f}_M}{\mathfrak{f}_W} \biggr)^n \, . </math> |
Hence, it appears as though, quite generally,
<math>~ \frac{1}{\mathfrak{f}_M} \biggl( \frac{5\mathfrak{f}_A \mathfrak{f}_M}{\mathfrak{f}_W} \biggr)^n </math> |
<math>~=</math> |
<math> - \biggl( \frac{\xi}{3\Theta^'} \biggr)_{\xi=\xi_1} \biggl[ (n+1) \xi ~(-\Theta^') \biggr]^n_{\xi=\xi_1} \, . </math> |
Or, taking into account the expressions for <math>~\mathfrak{f}_M</math> and <math>~\mathfrak{f}_W</math> that have just been uncovered, we conclude that,
<math>~ \frac{5\mathfrak{f}_A \mathfrak{f}_M}{\mathfrak{f}_W} </math> |
<math>~=</math> |
<math> \biggl[ (n+1) \xi ~(-\Theta^') \biggr]_{\xi=\xi_1} </math> |
<math>\Rightarrow ~~~~ \frac{\mathfrak{f}_A}{\mathfrak{f}_W} </math> |
<math>~=</math> |
<math> \frac{(n+1) }{3\cdot 5} ~\xi_1^2 \, . </math> |
<math>\Rightarrow ~~~~ \mathfrak{f}_A </math> |
<math>~=</math> |
<math> \frac{(n+1) }{3\cdot 5} ~\xi_1^2 \biggl\{ \frac{3^2\cdot 5}{5-n} \biggl[ \frac{\Theta^'}{\xi} \biggr]^2_{\xi_1} \biggr\}\, . </math> |
|
<math>~=</math> |
<math> \frac{3(n+1) }{(5-n)} ~\biggl[ \Theta^' \biggr]^2_{\xi_1} \, . </math> |
Central Pressure
It is also worth pointing out that Chandrasekhar [C67] — see his Equations (80) & (81), p. 99 — introduces a dimensionless structural form factor, <math>~W_n</math>, for the central pressure via the expression,
<math>~P_c</math> |
<math>~=</math> |
<math>~W_n \biggl( \frac{GM^2}{R^4} \biggr) \, ,</math> |
and demonstrates that,
<math>~\frac{1}{W_n}</math> |
<math>~\equiv</math> |
<math>~4\pi (n+1) \biggl[ \Theta^' \biggr]^2_{\xi_1} \, .</math> |
It is therefore clear that a spherical polytrope's central pressure is expressible in terms of our structural form factor, <math>~\mathfrak{f}_A</math>, as,
<math>~P_c</math> |
<math>~=</math> |
<math>~\frac{3}{4\pi (5-n)} \biggl( \frac{GM_\mathrm{tot}^2}{R_\mathrm{eq}^4} \biggr) \frac{1}{\mathfrak{f}_A} \, .</math> |
Alternate Derivations
Central Pressure
As is pointed out, above, in our discussion of the mass-radius relationship, the expression for the equilibrium radius that has been derived from our analysis of extrema in the free energy function can be written as,
<math>~4\pi \biggl( \frac{G}{K}\biggr)^n M^{(n-1)} R_\mathrm{eq}^{(3-n)}</math> |
<math>~=</math> |
<math> ~\frac{3}{\mathfrak{f}_M} \biggl( \frac{5\mathfrak{f}_A \mathfrak{f}_M}{\mathfrak{f}_W} \biggr)^n \, . </math> |
Via the polytropic equation of state, we can relate <math>~K</math> to the central pressure as follows:
<math>~P_c</math> |
<math>~=</math> |
<math> ~K \rho_c^{1+1/n} = K \bar\rho^{1+1/n} \biggl( \frac{\rho_c}{\bar\rho} \biggr)^{1+1/n} = K \biggl[ \frac{3M_\mathrm{tot}}{4\pi R_\mathrm{eq}^3} \biggr]^{(n+1)/n} \biggl( \frac{1}{\mathfrak{f}_M} \biggr)^{(n+1)/n} </math> |
<math>\Rightarrow ~~~~ K^{n}</math> |
<math>~=</math> |
<math> P_c^{n} \biggl[ \frac{4\pi R_\mathrm{eq}^3}{3M_\mathrm{tot}} \biggr]^{(n+1)} \mathfrak{f}_M^{(n+1)} \, . </math> |
Hence, in the mass-radius relationship we can replace <math>~K</math> with this expression to obtain,
<math>~4\pi \biggl( \frac{G}{P_c}\biggr)^n M^{(n-1)} R_\mathrm{eq}^{(3-n)} \biggl[ \frac{3M_\mathrm{tot}}{4\pi R_\mathrm{eq}^3} \biggr]^{(n+1)}</math> |
<math>~=</math> |
<math> ~3 \biggl( \frac{5\mathfrak{f}_A \mathfrak{f}_M^2}{\mathfrak{f}_W} \biggr)^n </math> |
<math>\Rightarrow ~~~~ \biggl( \frac{G M_\mathrm{tot}^2}{P_c R_\mathrm{eq}^4}\biggr)^n \biggl( \frac{3}{4\pi } \biggr)^{n}</math> |
<math>~=</math> |
<math> ~\biggl( \frac{5\mathfrak{f}_A \mathfrak{f}_M^2}{\mathfrak{f}_W} \biggr)^n </math> |
<math> \Rightarrow ~~~~ P_c = \frac{3 }{20\pi }\biggl( \frac{G M_\mathrm{tot}^2}{R_\mathrm{eq}^4} \biggr) \cdot \frac{\mathfrak{f}_W}{\mathfrak{f}_A \mathfrak{f}_M^2} \, . </math> |
Now, from our above examination of the expression for the gravitational potential energy, we know that,
<math>~\frac{\mathfrak{f}_W}{\mathfrak{f}_M^2}</math> |
<math>~=</math> |
<math>~\frac{5}{5-n} \, .</math> |
Hence, our expression for the central pressure becomes,
<math> ~P_c = \frac{3 }{4\pi (5-n)}\biggl( \frac{G M_\mathrm{tot}^2}{R_\mathrm{eq}^4} \biggr) \cdot \frac{1}{\mathfrak{f}_A } \, . </math> |
As it should, this precisely matches the expression that we derived, above, starting from Chandrasekhar's [C67] presentation.
Gravitational Potential Energy
As has been discussed elsewhere, we have learned from Chandrasekhar's discussion of polytropic spheres [C67] — see his Equation (16), p. 64 — that if a spherically symmetric system is in hydrostatic balance, the total gravitational potential energy can be obtained from the following integral:
<math>~W_\mathrm{grav}</math> |
<math>~=</math> |
<math>~ + \frac{1}{2} \int_0^R \Phi(r) dm \, .</math> |
Using "technique #3" to solve the differential equation that governs the statement of hydrostatic balance, we know that in any polytropic sphere, <math>~\Phi(r)</math> is related to the configuration's radial enthalpy profile, <math>~H(r)</math>, via the algebraic expression,
<math>~\Phi(r) + H(r)</math> |
<math>~=</math> |
<math>~C_B \, ,</math> |
where, <math>~C_B</math>, is an integration constant. At the surface of the equilibrium configuration, <math>~H = 0</math> and <math>~\Phi = - GM_\mathrm{tot}/R_\mathrm{eq}</math>, so the integration constant is,
<math>~C_B</math> |
<math>~=</math> |
<math>~- \frac{GM_\mathrm{tot}}{R_\mathrm{eq}} \, ,</math> |
which implies,
<math>~\Phi(r) </math> |
<math>~=</math> |
<math>~ - H(r) - \frac{GM_\mathrm{tot}}{R_\mathrm{eq}} \, .</math> |
Now, from our general discussion of barotropic relations, we can write,
<math>~H(r)</math> |
<math>~=</math> |
<math>~(n+1) \frac{P(r)}{\rho(r)} \, .</math> |
Hence,
<math>~-\Phi(r)</math> |
<math>~=</math> |
<math>~(n+1) \frac{P(r)}{\rho(r)} + \frac{GM_\mathrm{tot}}{R_\mathrm{eq}} \, ,</math> |
and,
<math>~W_\mathrm{grav}</math> |
<math>~=</math> |
<math>~ - \frac{1}{2} \int_0^R \biggl[ (n+1) \frac{P(r)}{\rho(r)} + \frac{GM_\mathrm{tot}}{R_\mathrm{eq}} \biggr] 4\pi \rho(r) r^2 dr </math> |
|
<math>~=</math> |
<math>~ - 2\pi \biggl\{ (n+1) \int_0^R P(r) r^2 dr + \frac{GM_\mathrm{tot}}{R_\mathrm{eq}} \int_0^R \rho(r) r^2 dr \biggr\} </math> |
|
<math>~=</math> |
<math>~ - 2\pi \biggl\{ \frac{1}{3} (n+1)P_c R_\mathrm{eq}^3 \int_0^1 3\biggl[ \frac{P(x)}{P_c} \biggr] x^2 dx + \frac{GM_\mathrm{tot}}{3R_\mathrm{eq}} \biggl( \rho_c R_\mathrm{eq}^3 \biggr) \int_0^1 3 \biggl[ \frac{\rho(x)}{\rho_c} \biggr] x^2 dx \biggr\} </math> |
|
<math>~=</math> |
<math>~ - 2\pi \biggl\{ \frac{1}{3} (n+1)P_c R_\mathrm{eq}^3 \mathfrak{f}_A + \frac{GM_\mathrm{tot}}{3R_\mathrm{eq}} \biggl( \rho_c R_\mathrm{eq}^3 \biggr) \mathfrak{f}_M \biggr\} </math> |
|
<math>~=</math> |
<math>~ - \frac{GM_\mathrm{tot}^2}{R_\mathrm{eq}} \biggl\{ \frac{2\pi}{3} (n+1) \biggl[ \frac{P_c R_\mathrm{eq}^4}{GM_\mathrm{tot}^2} \biggr] \mathfrak{f}_A + \frac{1}{2} \biggl[ \frac{4\pi \rho_c R_\mathrm{eq}^3}{3M_\mathrm{tot}} \biggr] \mathfrak{f}_M \biggr\} </math> |
|
<math>~=</math> |
<math>~ - \frac{1}{2} \frac{GM_\mathrm{tot}^2}{R_\mathrm{eq}} \biggl\{ \frac{4\pi}{3} (n+1) \biggl[ \frac{P_c R_\mathrm{eq}^4}{GM_\mathrm{tot}^2} \biggr] \mathfrak{f}_A + 1 \biggr\} \, .</math> |
We now recall two earlier expressions that show the role that our structural form factors play in the evaluation of <math>~W</math> and <math>~P_c</math>, namely,
<math>~W_\mathrm{grav}</math> |
<math>~=</math> |
<math>~ - \frac{3}{5} \biggl( \frac{GM_\mathrm{tot}^2}{R_\mathrm{eq}} \biggr) \cdot \frac{\mathfrak{f}_W}{\mathfrak{f}_M^2}</math> |
and,
<math>~P_c</math> |
<math>~=</math> |
<math>~ \frac{3 }{20\pi }\biggl( \frac{G M_\mathrm{tot}^2}{R_\mathrm{eq}^4} \biggr) \cdot \frac{\mathfrak{f}_W}{\mathfrak{f}_A \mathfrak{f}_M^2} \, .</math> |
Plugging these into our newly derived expression for the gravitational potential energy gives,
<math>~- \frac{3}{5} \cdot \frac{\mathfrak{f}_W}{\mathfrak{f}_M^2}</math> |
<math>~=</math> |
<math>~ - \frac{1}{2} \biggl\{ \frac{4\pi}{3} (n+1) \biggl[ \frac{3 }{20\pi }\cdot \frac{\mathfrak{f}_W}{\mathfrak{f}_A \mathfrak{f}_M^2} \biggr] \mathfrak{f}_A + 1 \biggr\} </math> |
<math>\Rightarrow ~~~~ (2\cdot 3) \cdot \frac{\mathfrak{f}_W}{\mathfrak{f}_M^2}</math> |
<math>~=</math> |
<math>~ (n+1) \cdot \frac{\mathfrak{f}_W}{\mathfrak{f}_M^2} + 5 </math> |
<math>\Rightarrow ~~~~ (5 - n) \cdot \frac{\mathfrak{f}_W}{\mathfrak{f}_M^2}</math> |
<math>~=</math> |
<math>~ 5 </math> |
<math>\Rightarrow ~~~~ \frac{\mathfrak{f}_W}{\mathfrak{f}_M^2}</math> |
<math>~=</math> |
<math>~ \frac{5}{5-n} \, . </math> |
As it should, this agrees with the expression for the ratio, <math>\mathfrak{f}_W/\mathfrak{f}_M^2</math>, that was derived in our above discussion of the gravitational potential energy.
Summary
In summary, expressions for the three structural form factors associated with isolated, spherically symmetric polytropes are as follows:
Dimensionless Form Factors for Isolated Polytropes | |||||||||
---|---|---|---|---|---|---|---|---|---|
|
Nonrotating Adiabatic Configuration Embedded in an External Medium
For a nonrotating configuration <math>~(C=J=0)</math> that is embedded in, and is influenced by the pressure <math>~P_e</math> of, an external medium, the statement of virial equilibrium is,
<math> 3 B\chi_\mathrm{eq}^{3 -3\gamma_g} -~3A\chi_\mathrm{eq}^{-1} -~ 3D\chi_\mathrm{eq}^3 = 0 \, . </math>
Whitworth's (1981) Equivalent Relation
This is precisely the same condition that derives from setting equation (3) to zero in Whitworth's (1981, MNRAS, 195, 967) discussion of the Global Gravitational Stability for One-dimensional Polytropes. The overlap with Whitworth's narative is clearer after introducing the algebraic expressions for the coefficients <math>~A</math>, <math>~B</math>, and <math>~D</math>, to obtain,
<math>~4\pi \biggl( \frac{P_e}{P_\mathrm{norm}} \biggr) \chi_\mathrm{eq}^3 </math> |
<math>~=</math> |
<math>~3 \biggl( \frac{4\pi}{3} \biggr)^{1-\gamma_g} \frac{\mathfrak{f}_A}{\mathfrak{f}_M^{\gamma_g}} \cdot \chi_\mathrm{eq}^{3 -3\gamma_g} ~-~\frac{3}{5} \cdot \frac{\mathfrak{f}_W}{\mathfrak{f}^2_M} \cdot \chi_\mathrm{eq}^{-1} \, ;</math> |
dividing the equation through by <math>~(4\pi \chi_\mathrm{eq}^3/P_\mathrm{norm})</math>,
<math>~P_e </math> |
<math>~=</math> |
<math>~P_\mathrm{norm} \biggl[ \biggl( \frac{3}{4\pi} \biggr)^{\gamma_g} \frac{\mathfrak{f}_A}{\mathfrak{f}_M^{\gamma_g}} \cdot \chi_\mathrm{eq}^{-3\gamma_g} ~- \biggl(\frac{3}{20\pi} \biggr) \frac{\mathfrak{f}_W}{\mathfrak{f}^2_M} \cdot \chi_\mathrm{eq}^{-4} \biggr] </math> |
|
<math>~=</math> |
<math>~P_\mathrm{norm} R_\mathrm{norm}^4\biggl[ \biggl( \frac{3}{4\pi R_\mathrm{eq}^3} \biggr)^{\gamma_g} \frac{\mathfrak{f}_A}{\mathfrak{f}_M^{\gamma_g}} \cdot R_\mathrm{norm}^{3\gamma_g-4} - \biggl(\frac{3}{20\pi R_\mathrm{eq}^4} \biggr) \frac{\mathfrak{f}_W}{\mathfrak{f}^2_M} \biggr] \, ;</math> |
and inserting expressions for the parameter normalizations as defined in our accompanying introductory discussion to obtain,
<math>~P_e </math> |
<math>~=</math> |
<math>~GM_\mathrm{tot}^2\biggl[ \biggl( \frac{3}{4\pi R_\mathrm{eq}^3} \biggr)^{\gamma_g} \frac{\mathfrak{f}_A}{\mathfrak{f}_M^{\gamma_g}} \cdot \frac{K M_\mathrm{tot}^{\gamma_g-2}}{G} - \biggl(\frac{3}{20\pi R_\mathrm{eq}^4} \biggr) \frac{\mathfrak{f}_W}{\mathfrak{f}^2_M} \biggr] </math> |
|
<math>~=</math> |
<math>~K \biggl( \frac{3M_\mathrm{tot}}{4\pi R_\mathrm{eq}^3} \biggr)^{\gamma_g} \frac{\mathfrak{f}_A}{\mathfrak{f}_M^{\gamma_g}} - \biggl(\frac{3GM_\mathrm{tot}^2}{20\pi R_\mathrm{eq}^4} \biggr) \frac{\mathfrak{f}_W}{\mathfrak{f}^2_M} \, .</math> |
If the structural form factors are set equal to unity, this exactly matches equation (5) of Whitworth, which reads:
Renormalization
Returning to the dimensionless form of this expression and multiplying through by <math>~[-\chi_\mathrm{eq}/(3D)]</math>, we obtain,
<math> \chi_\mathrm{eq}^4 = \frac{B}{D} \chi_\mathrm{eq}^{4-3\gamma_g} - \frac{A}{D} \, , </math>
or, after plugging in definitions of the coefficients, <math>~A</math>, <math>~B</math>, and <math>~D</math>, and rewriting <math>~\chi_\mathrm{eq}</math> explicitly as <math>~R_\mathrm{eq}/R_\mathrm{norm}</math>,
<math>~\biggl( \frac{R_\mathrm{eq}}{R_\mathrm{norm}} \biggr)^4 </math> |
<math>~=</math> |
<math> \biggl(\frac{3}{4\pi}\biggr)^{\gamma_g} \biggl( \frac{P_e}{P_\mathrm{norm}} \biggr)^{-1} \frac{\mathfrak{f}_A}{\mathfrak{f}_M^{\gamma_g}} \biggl( \frac{R_\mathrm{eq}}{R_\mathrm{norm}} \biggr)^{4-3\gamma_g} - \frac{3}{20\pi} \biggl( \frac{P_e}{P_\mathrm{norm}} \biggr)^{-1} \frac{\mathfrak{f}_W}{\mathfrak{f}_M^2} \, .</math> |
This relation can be written in a more physically concise form, as follows. First, normalize <math>~P_e</math> to a new pressure scale — call it <math>~P_\mathrm{ad}</math> — and multiply through by <math>~(R_\mathrm{norm}/R_\mathrm{ad})^4</math> in order to normalizing <math>~R_\mathrm{eq}</math> to a new length scale,<math>~R_\mathrm{ad}</math>:
<math>~\biggl( \frac{R_\mathrm{eq}}{R_\mathrm{ad}} \biggr)^4 </math> |
<math>~=</math> |
<math> \biggl(\frac{3}{4\pi}\biggr)^{\gamma_g} \biggl( \frac{P_\mathrm{norm}}{P_\mathrm{ad}} \biggr) \biggl( \frac{P_e}{P_\mathrm{ad}} \biggr)^{-1} \frac{\mathfrak{f}_A}{\mathfrak{f}_M^{\gamma_g}} \biggl( \frac{R_\mathrm{norm}}{R_\mathrm{ad}} \biggr)^{3\gamma_g}\biggl( \frac{R_\mathrm{eq}}{R_\mathrm{ad}} \biggr)^{4-3\gamma_g} - \frac{3}{20\pi} \biggl( \frac{P_\mathrm{norm}}{P_\mathrm{ad}} \biggr) \frac{\mathfrak{f}_W}{\mathfrak{f}_M^2} \biggl( \frac{P_e}{P_\mathrm{ad}} \biggr)^{-1} \biggl( \frac{R_\mathrm{norm}}{R_\mathrm{ad}} \biggr)^{4} \, ,</math> |
or,
<math>~\chi_\mathrm{ad}^4 </math> |
<math>~=</math> |
<math> \biggl(\frac{3}{4\pi}\biggr)^{\gamma_g} \biggl( \frac{P_\mathrm{norm}}{P_\mathrm{ad}} \biggr) \biggl( \frac{R_\mathrm{norm}}{R_\mathrm{ad}} \biggr)^{3\gamma_g} \frac{\mathfrak{f}_A}{\mathfrak{f}_M^{\gamma_g}}\cdot \frac{\chi_\mathrm{ad}^{4-3\gamma_g} }{\Pi_\mathrm{ad}} - \frac{3}{20\pi} \biggl( \frac{P_\mathrm{norm}}{P_\mathrm{ad}} \biggr) \biggl( \frac{R_\mathrm{norm}}{R_\mathrm{ad}} \biggr)^{4} \frac{\mathfrak{f}_W}{\mathfrak{f}_M^2} \cdot \frac{1}{\Pi_\mathrm{ad}} \, ,</math> |
where,
<math>~\chi_\mathrm{ad}</math> |
<math>~\equiv</math> |
<math>~\frac{R_\mathrm{eq}}{R_\mathrm{ad}} \, ,</math> |
<math>~\Pi_\mathrm{ad}</math> |
<math>~\equiv</math> |
<math>~\frac{P_\mathrm{e}}{P_\mathrm{ad}} \, .</math> |
Then, by defining the two new scaling parameters such that the leading coefficients of both terms on the right-hand-side of the expression are simultaneously unity — that is,
<math>~\biggl(\frac{3}{4\pi}\biggr)^{\gamma_g} \biggl( \frac{P_\mathrm{norm}}{P_\mathrm{ad}} \biggr) \biggl( \frac{R_\mathrm{norm}}{R_\mathrm{ad}} \biggr)^{3\gamma_g} \frac{\mathfrak{f}_A}{\mathfrak{f}_M^{\gamma_g}}</math> |
<math>~=</math> |
<math>~1 \, ,</math> |
and,
<math>~\frac{3}{20\pi} \biggl( \frac{P_\mathrm{norm}}{P_\mathrm{ad}} \biggr) \biggl( \frac{R_\mathrm{norm}}{R_\mathrm{ad}} \biggr)^{4} \frac{\mathfrak{f}_W}{\mathfrak{f}_M^2} </math> |
<math>~=</math> |
<math>~1 \, ,</math> |
which implies expressions for <math>~R_\mathrm{ad}/R_\mathrm{norm}</math> and <math>~P_\mathrm{ad}/P_\mathrm{norm}</math> as shown in the following table — we arrive at the desired, concise equilibrium relation, namely,
<math>~\chi_\mathrm{ad}^4</math> |
<math>~=</math> |
<math>~\frac{1}{\Pi_\mathrm{ad}} \biggl[ \chi_\mathrm{ad}^{4-3\gamma_g} - 1 \biggr] \, .</math> |
Renormalization for Adiabatic (ad) Systems | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
P-V Diagram for Unity Form Factors
Writing the coefficient, <math>B</math>, in terms of the average sound speed and setting the radial scale factor equal to the equilibrium radius of an isolated adiabatic sphere, that is, setting,
<math> R_0 = \frac{GM}{5\bar{c_s}^2} \, , </math>
the equation governing the radii of adiabatic equilibrium states becomes,
<math> \chi^4 - \frac{1}{\Pi_a} \chi^{(4-3\gamma_g)} + \frac{1}{\Pi_a} = 0 \, , </math>
where,
<math> \Pi_a \equiv \frac{4\pi P_e G^3 M^2}{3\cdot 5^3 \bar{c_s}^8} \, . </math>
As in the isothermal case, for a given choice of configuration mass and sound speed, this parameter, <math>\Pi_a</math>, can be viewed as a dimensionless external pressure. Alternatively, for a given choice of <math>P_e</math> and <math>\bar{c_s}</math>, <math>\Pi_a^{1/2}</math> can represent a dimensionless mass; or, for a given choice of <math>M</math> and <math>P_e</math>, <math>\Pi_a^{-1/8}</math> can represent a dimensionless sound speed. Here we will view it as a dimensionless external pressure.
Unlike the isothermal case, for an arbitrary value of the adiabatic exponent, <math>\gamma_g</math>, it isn't possible to invert this equation to obtain an analytic expression for <math>\chi</math> as a function of <math>\Pi_a</math>. But we can straightforwardly solve for <math>\Pi_a</math> as a function of <math>\chi</math>. The solution is,
<math> \Pi_a = \frac{\chi^{(4- 3\gamma_g)} - 1}{\chi^4} \, . </math>
For physically relevant solutions, both <math>\chi</math> and <math>\Pi_a</math> must be nonnegative. Hence, as is illustrated by the curves in Figure 4, the physically allowable range of equilibrium radii is,
<math> 1 \le \chi \le \infty \, ~~~~~\mathrm{for}~ \gamma_g < 4/3 \, ; </math>
<math> 0 < \chi \le 1 \, ~~~~~~\mathrm{for}~ \gamma_g > 4/3 \, . </math>
Figure 4: Equilibrium Adiabatic P-V Diagram |
|
The curves trace out the function, <math> \Pi_a = (\chi^{4-3\gamma_g} - 1)/\chi^4 \, , </math> for six different values of <math>\gamma_g</math> (<math>2, ~5/3, ~7/5, ~6/5, ~1, ~2/3</math>, as labeled) and show the dimensionless external pressure, <math>\Pi_a</math>, that is required to construct a nonrotating, self-gravitating, uniform density, adiabatic sphere with an equilibrium radius <math>\chi</math>. The mathematical solution becomes unphysical wherever the pressure becomes negative. The solid red curve, drawn for the case <math>\gamma_g = 1</math>, is identical to the solid black (isothermal) curve displayed above in Figure 1. |
Each of the <math>\Pi_a(\chi)</math> curves drawn in Figure 4 exhibits an extremum. In each case this extremum occurs at a configuration radius, <math>\chi_\mathrm{extreme}</math>, given by,
<math> \frac{\partial\Pi_a}{\partial\chi} = 0 \, , </math>
that is, where,
<math> 4 - 3\gamma_g \chi^{4-3\gamma_g} = 0 ~~~~\Rightarrow ~~~~~ \chi_\mathrm{extreme} = \biggl[ \frac{4}{3\gamma_g} \biggr]^{1/(4-3\gamma_g)} \, . </math>
For each value of <math>\gamma_g</math>, the corresponding dimensionless pressure is,
<math> \Pi_a \biggr|_\mathrm{extreme} = \biggl(\frac{4}{3\gamma} - 1 \biggr) \biggl[ \frac{3\gamma_g}{4} \biggr]^{4/(4-3\gamma_g)} \, . </math>
Note, first, that for <math>\gamma_g > 4/3</math>, an equilibrium configuration with a positive radius can be constructed for all physically realistic — that is, for all positive — values of <math>\Pi_a</math>. Also, consistent with the behavior of the curves shown in Figure 4, the extremum arises in the regime of physically relevant — i.e., positive — pressures only for values of <math>\gamma_g < 4/3</math>; and in each case it represents a maximum limiting pressure.
Maximum Mass
<math>n=5</math> Polytropic
When <math>\gamma_a = 6/5</math> — which corresponds to an <math>n=5</math> polytropic configuration — we obtain,
<math> \Pi_\mathrm{max} = \Pi_a\biggr|_\mathrm{extreme}^{(\gamma_g = 6/5)} = \biggl( \frac{3^{18}}{2^{10}\cdot 5^{10}} \biggr) \, , </math>
which corresponds to a maximum mass for pressure-bounded <math>n=5</math> polytropic configurations of,
<math>M_\mathrm{max} = \Pi_\mathrm{max}^{1/2} \biggl(\frac{3\cdot 5^3}{2^2\pi} \biggr)^{1/2} \biggl( \frac{\bar{c_s}^8}{G^3 P_e} \biggr)^{1/2} = \biggl(\frac{3^{19}}{2^{12}\cdot 5^{7}\pi} \biggr)^{1/2} \biggl( \frac{\bar{c_s}^8}{G^3 P_e} \biggr)^{1/2} \, .</math>
This result can be compared to other determinations of the Bonnor-Ebert mass limit.
Material that appears after this point in our presentation is under development and therefore
may contain incorrect mathematical equations and/or physical misinterpretations.
| Go Home |
Relationship to Detailed Force Balance Solution
Let's plug these form-factors into our expressions for the dimensionless equilibrium radius, <math>~\chi_\mathrm{ad}</math>, and dimensionless surface pressure, <math>~\Pi_\mathrm{ad}</math>, that have been derived from the identification of extrema in the free-energy function and see how they compare to the dimensionless radius, <math>~r_a \equiv R_\mathrm{eq}/R_\mathrm{Hoerdt}</math>, and dimensionless pressure, <math>~p_a \equiv P_e/P_\mathrm{Hoerdt}</math>, given by Horedt's (1970) detailed force-balance models. Note that expressions for <math>~r_a</math> and <math>~p_a</math> are given in our accompanying discussion of embedded polytropic spheres and that the conversion from Hoerdt's scaling parameters to our normalization parameters, <math>~R_\mathrm{Hoerdt}/R_\mathrm{norm}</math> and <math>~P_\mathrm{Hoerdt}/P_\mathrm{norm}</math>, can be found in our introductory discussion of the virial equilibrium of spherical configurations.
<math>~\chi_\mathrm{ad} \equiv \frac{R_\mathrm{eq}}{R_\mathrm{ad}}</math> |
<math>~=</math> |
<math>~\frac{R_\mathrm{eq}}{R_\mathrm{Hoerdt}} \biggl( \frac{R_\mathrm{Hoerdt}}{R_\mathrm{norm}} \biggr) \biggl( \frac{R_\mathrm{norm}}{R_\mathrm{ad}} \biggr)</math> |
|
<math>~=</math> |
<math>~r_a \biggl[ \biggl(\frac{\gamma - 1}{\gamma}\biggr) (4\pi)^{\gamma-1}\biggr]^{1/(4-3\gamma)} \biggl[ 5 \biggl( \frac{4\pi}{3} \biggr)^{1-\gamma_g} \frac{\mathfrak{f}_A}{\mathfrak{f}_W \mathfrak{f}_M^{\gamma_g-2}} \biggr]^{1/(4-3\gamma_g)} </math> |
|
<math>~=</math> |
<math>~r_a \biggl[ 5 \cdot 3^{\gamma-1} \biggl(\frac{\gamma - 1}{\gamma}\biggr) \frac{\mathfrak{f}_A \mathfrak{f}_M^{2-\gamma_g}}{\mathfrak{f}_W } \biggr]^{1/(4-3\gamma_g)} </math> |
|
<math>~=</math> |
<math> r_a \biggl[ \frac{5 \cdot 3^{1/n} }{n+1} \cdot \frac{\mathfrak{f}_A \mathfrak{f}_M^{(n-1)/n}}{\mathfrak{f}_W } \biggr]^{n/(n-3)} = r_a \biggl[ 3 \mathfrak{f}_M^{n-1} \biggl( \frac{5 }{n+1} \cdot \frac{\mathfrak{f}_A }{\mathfrak{f}_W }\biggr)^n \biggr]^{1/(n-3)} </math> |
<math>~\Pi_\mathrm{ad} \equiv \frac{P_\mathrm{e}}{P_\mathrm{ad}}</math> |
<math>~=</math> |
<math>~\frac{P_\mathrm{e}}{P_\mathrm{Hoerdt}} \biggl( \frac{P_\mathrm{Hoerdt}}{P_\mathrm{norm}} \biggr) \biggl( \frac{P_\mathrm{norm}}{P_\mathrm{ad}} \biggr)</math> |
|
<math>~=</math> |
<math>~p_a \biggl[ \biggl( \frac{\gamma}{\gamma-1}\biggr)^{3\gamma} (4\pi)^{-\gamma} \biggr]^{1/(4-3\gamma)} \biggl[ \mathfrak{f}_A^{-4} \biggl( \frac{4\pi}{3\cdot 5^3} \cdot \frac{\mathfrak{f}_W^3}{\mathfrak{f}_M^2} \biggr)^{\gamma_g} \biggr]^{1/(4-3\gamma_g)} </math> |
|
<math>~=</math> |
<math>~p_a \mathfrak{f}_A^{-4/(4-3\gamma)} \biggl[ \biggl( \frac{\gamma}{\gamma-1}\biggr)^{3} \biggl( \frac{1}{3\cdot 5^3} \cdot \frac{\mathfrak{f}_W^3}{\mathfrak{f}_M^2} \biggr)\biggr]^{\gamma/(4-3\gamma)} </math> |
|
<math>~=</math> |
<math> ~p_a \mathfrak{f}_A^{-4n/(n-3)} \biggl[ \frac{(n+1)^3}{3\cdot 5^3} \cdot \frac{\mathfrak{f}_W^3}{\mathfrak{f}_M^2} \biggr]^{(n+1)/(n-3)} </math> |
Now we insert the form-factor expressions from above, to obtain,
<math>~\chi_\mathrm{ad} </math> |
<math>~=</math> |
<math> r_a \biggl[ 3 \biggl( \frac{5 }{n+1} \biggr)^n \biggr]^{1/(n-3)} \biggl[ \frac{\mathfrak{f}_A^n \mathfrak{f}_M^{n-1} }{\mathfrak{f}_W^n } \biggr]^{1/(n-3)} </math> |
|
<math>~=</math> |
<math> r_a \biggl[ 3 \biggl( \frac{5 }{n+1} \biggr)^n \biggr]^{1/(n-3)} \biggl\{ \biggl[ \frac{3(n+1) }{(5-n)} ~( \Theta^' )^2 \biggr]^n \biggl[ \frac{3^2\cdot 5}{5-n} \biggl( \frac{\Theta^'}{\xi} \biggr)^2 \biggr]^{-n} \biggl[ - \frac{3\Theta^'}{\xi} \biggr]^{n-1} \biggr\}^{1/(n-3)}_{\xi_1} </math> |
|
<math>~=</math> |
<math> r_a \biggl\{ 3^n \biggl( \frac{5 }{n+1} \biggr)^n \biggl[ \frac{3(n+1) }{(5-n)} \biggr]^n \biggl[ \frac{5-n}{3^2\cdot 5} \biggr]^{n} \biggr\}^{1/(n-3)} \biggl\{ \xi^{2n} \biggl[ - \frac{\Theta^'}{\xi} \biggr]^{n-1} \biggr\}^{1/(n-3)}_{\xi_1} </math> |
|
<math>~=</math> |
<math> r_a \biggl[ \xi^{n+1} ( - \Theta^' )^{n-1} \biggr]^{1/(n-3)}_{\xi_1} </math> |
<math>~\Pi_\mathrm{ad} </math> |
<math>~=</math> |
<math> ~p_a \mathfrak{f}_A^{-4n/(n-3)} \biggl[ \frac{(n+1)^3}{3\cdot 5^3} \cdot \frac{\mathfrak{f}_W^3}{\mathfrak{f}_M^2} \biggr]^{(n+1)/(n-3)} </math> |
|
<math>~=</math> |
<math>~p_a \biggl[ \frac{3(n+1) }{(5-n)} ~( \Theta^' )^2 \biggr]_{\tilde\xi}^{-4n/(n-3)} \biggl\{ \frac{(n+1)^3}{3\cdot 5^3} \cdot \biggl[\frac{3^2\cdot 5}{5-n} \biggl( \frac{\Theta^'}{\xi} \biggr)^2\biggr]^3 \biggl[ - \frac{3\Theta^'}{\xi} \biggr]^{-2} \biggr\}^{(n+1)/(n-3)}_{\xi_1} </math> |
|
<math>~=</math> |
<math> ~p_a \biggl\{ \biggl[ \frac{5-n}{3(n+1)} \biggr]^{4n} \biggl[ \frac{(n+1)^3 \cdot 3^6 \cdot 5^3}{3^3 \cdot 5^3 (5-n)^3} \biggr]^{(n+1)} \biggr\}^{1/(n-3)} \biggl[ ( \Theta^' )^{-8n} \biggl( \frac{\Theta^'}{\xi} \biggr)^{4(n+1)} \biggr]^{1/(n-3)}_{\xi_1} </math> |
|
<math>~=</math> |
<math> ~p_a \biggl[ \frac{5-n}{3(n+1)} \biggr] \biggl[\xi^{n+1} ( \Theta^' )^{n-1} \biggr]^{-4/(n-3)}_{\xi_1} </math> |
Notice that the bracketed term that is to be evaluated at <math>~\xi_1</math> is identical in both expressions. After renormalization, as drived above, the statement of virial equilibrium for embedded polytropes is,
<math>~\chi_\mathrm{ad}^4</math> |
<math>~=</math> |
<math>~\frac{1}{\Pi_\mathrm{ad}} \biggl[ \chi_\mathrm{ad}^{4-3\gamma_g} - 1 \biggr] \, ,</math> |
or, setting <math>~\gamma_g = (n+1)/n</math>,
<math>~\Pi_\mathrm{ad} \chi_\mathrm{ad}^4</math> |
<math>~=</math> |
<math>~\chi_\mathrm{ad}^{(n-3)/n} - 1 \, .</math> |
This relation can now be written in terms of Horedt's (1970) dimensionless radius and pressure.
<math> ~p_a \biggl[ \frac{5-n}{3(n+1)} \biggr] \biggl[\xi^{n+1} ( \Theta^' )^{n-1} \biggr]^{-4/(n-3)}_{\xi_1} \cdot r_a^4 \biggl[ \xi^{n+1} ( - \Theta^' )^{n-1} \biggr]^{4/(n-3)}_{\xi_1} </math> |
<math>~=</math> |
<math>~ r_a^{(n-3)/n} \biggl[ \xi^{n+1} ( - \Theta^' )^{n-1} \biggr]^{1/n}_{\xi_1} - 1</math> |
<math> \Rightarrow ~~~~ p_a r_a^4 \biggl[ \frac{5-n}{3(n+1)} \biggr] </math> |
<math>~=</math> |
<math>~ r_a^{(n-3)/n} \biggl[ \xi^{n+1} ( - \Theta^' )^{n-1} \biggr]^{1/n}_{\xi_1} - 1 \, ,</math> |
where, from our separate summary of Hoerdt's presentation,
<math> ~r_a </math> |
<math>~=~</math> |
<math> \tilde\xi ( -\tilde\xi^2 \tilde\theta' )^{(1-n)/(n-3)} = \biggl[ \tilde\xi^{n+1} (-\tilde\theta^')^{n-1} \biggr]^{-1/(n-3)}\, , </math> |
<math> ~p_a </math> |
<math>~=~</math> |
<math> \tilde\theta_n^{n+1}( -\tilde\xi^2 \tilde\theta' )^{2(n+1)/(n-3)} \, . </math> |
Hence, the virial relation becomes,
<math> ~1 </math> |
<math>~=</math> |
<math>~ \biggl\{ \frac{ [ \xi^{n+1} ( - \Theta^' )^{n-1} ]_{\xi_1} }{ [ \tilde\xi^{n+1} (-\tilde\theta^')^{n-1} ] } \biggr\}^{1/n} - \biggl[ \frac{5-n}{3(n+1)} \biggr] \tilde\theta_n^{n+1} \biggl\{ \frac{( -\tilde\xi^2 \tilde\theta' )^{2(n+1)/(n-3)}}{ [ \tilde\xi^{n+1} (-\tilde\theta^')^{n-1} ]^{4/(n-3)} } \biggr\} </math> |
|
<math>~=</math> |
<math>~ \biggl[ \frac{ \xi_1^{n+1} ( - \Theta^' )^{n-1}_{\xi_1} }{ \tilde\xi^{n+1} (-\tilde\theta^')^{n-1} } \biggr]^{1/n} - \biggl[ \frac{5-n}{3(n+1)} \biggr] \tilde\theta_n^{n+1} \biggl\{ \frac{ \tilde\xi^{4n+4} ( -\tilde\theta' )^{2n+2}}{ \tilde\xi^{4n+4} (-\tilde\theta^')^{4n-4} } \biggr\}^{1/(n-3)} </math> |
|
<math>~=</math> |
<math>~ \biggl[ \frac{ \xi_1^{n+1} ( - \Theta^' )^{n-1}_{\xi_1} }{ \tilde\xi^{n+1} (-\tilde\theta^')^{n-1} } \biggr]^{1/n} - \biggl[ \frac{5-n}{3(n+1)} \biggr] \frac{ \tilde\theta_n^{n+1} }{ ( -\tilde\theta' )^{2} } \, .</math> |
This needs to be checked, perhaps with specific applications to the cases <math>~n=1</math> and <math>~n=5</math>.
© 2014 - 2021 by Joel E. Tohline |