User:Tohline/Appendix/Ramblings/Radiation/SummaryScalings
| Tiled Menu | Tables of Content | Banner Video | Tohline Home Page | |
Summary of Scalings
On an accompanying Wiki page we have explained how to interpret the set of dimensionless units that Dominic Marcello is using in his rad-hydrocode. The following table summarizes some of the mathematical relationships that have been derived in that accompanying discussion.
General Relation |
Case A: |
||||||||||||||
| |||||||||||||||
where: |
<math> \mu_e^2 M_\mathrm{Ch} = 1.14169\times 10^{34}~\mathrm{g} </math>; <math> \mu_e \ell_\mathrm{Ch} = 7.71311\times 10^{8}~\mathrm{cm} </math>; <math> \mu_e^{1/2} t_\mathrm{Ch} = 3.90812~\mathrm{s} </math> |
||||||||||||||
Case A <math>\Rightarrow ~~~\tilde{g} = 1</math>; <math>\tilde{c} = 198</math>; <math>\tilde{r} = 0.44</math>; <math>\tilde{a} = 0.044</math>; <math>\bar\mu = 4/3</math>; <math>\rho_\mathrm{max} = 1</math>; <math>(\Delta R) = \frac{\pi}{128}</math> |
===============STOP=============
General Relation |
Case A: |
||||||||||||||||||
| |||||||||||||||||||
Case A <math>\Rightarrow ~~~\tilde{g} = 1</math>; <math>\tilde{c} = 198</math>; <math>\tilde{r} = 0.44</math>; <math>\tilde{a} = 0.044</math>; <math>\bar\mu = 4/3</math>; <math>\rho_\mathrm{max} = 1</math>; <math>(\Delta R) = \frac{\pi}{128}</math> |
Combining the above Case A relations with the RadHydro-code properties of the Q0.7 polytropic binary that serves as an initial condition for Dominic's simulations, we conclude the following:
(1) The system will experience "super-Eddington" accretion (i.e., <math>f_\mathrm{Edd} > 1</math>) when
<math> [\dot{M}]_\mathrm{code} > 1.3\times 10^{-10} . </math>
(2) The mean-free-path, <math>\ell_\mathrm{mfp}</math>, of a photon will be less than one grid cell <math>(\Delta R)_\mathrm{code}</math> when
<math> [\rho]_\mathrm{code} > \rho_\mathrm{threshold} = 5\times 10^{-12} . </math>
(3) The system is weakly relativistic because,
<math> \frac{v_\mathrm{circ}}{c} = 0.0026 . </math>
© 2014 - 2021 by Joel E. Tohline |