User:Tohline/Appendix/Ramblings/T3CharacteristicVector

From VistrailsWiki
< User:Tohline‎ | Appendix/Ramblings
Revision as of 21:35, 6 June 2010 by Tohline (talk | contribs) (Begin investigation of the Characteristic Vector in the specific context of T3 coordinates)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search
Whitworth's (1981) Isothermal Free-Energy Surface
|   Tiled Menu   |   Tables of Content   |  Banner Video   |  Tohline Home Page   |

Characteristic Vector for T3 Coordinates

Let's apply Jay's Characteristic Vector approach to Joel's T3 Coordinate System.

Brute Force Manipulations

Starting from Equation CV.02, and plugging in expressions for various logarithmic derivatives of the T3 scale factors, we obtain,

 

<math> \frac{\dot{C}_2}{C_2} \biggl(\frac{d \ln{\lambda}_2}{dt}\biggr)^{-1} </math>

<math> = </math>

<math> \biggl(\frac{h_1 \dot{\lambda}_1}{h_2 \dot{\lambda}_2}\biggr)^2 \frac{\partial \ln h_1}{\partial\ln\lambda_2} + \frac{\partial \ln h_2}{\partial \ln\lambda_2} </math>

 

 

<math> = </math>

<math> \biggl(\frac{h_1 \dot{\lambda}_1}{h_2 \dot{\lambda}_2}\biggr)^2 \biggl( \frac{q h_1 h_2 \lambda_2}{\lambda_1 } \biggr)^2 - ( qh_1^2 )^2 </math>

 

 

<math> = </math>

<math> \biggl[ (h_1 \dot{\lambda}_1)^2 ( q h_1 h_2 \lambda_2 )^2 - (h_2 \dot{\lambda}_2)^{2} ( qh_1^2 \lambda_1 )^2 \biggr](h_2 \lambda_1 \dot{\lambda}_2)^{-2} </math>

 

 

<math> = </math>

<math> \biggl[ \biggl(\frac{\dot{\lambda}_1}{\lambda_1}\biggr)^2 - \biggl( \frac{\dot{\lambda}_2}{\lambda_2} \biggr)^2 \biggr]( q h_1^2 h_2 \lambda_1 \lambda_2 )^2 (h_2 \lambda_1 \dot{\lambda}_2)^{-2} </math>

 

 

<math> = </math>

<math> \biggl[ \frac{\dot{\lambda}_1}{\lambda_1} + \frac{\dot{\lambda}_2}{\lambda_2} \biggr] \biggl[ \frac{\dot{\lambda}_1}{\lambda_1} - \frac{\dot{\lambda}_2}{\lambda_2} \biggr] \biggl( \frac{ q h_1^2 \lambda_2}{\dot{\lambda}_2} \biggr)^2 </math>

<math>\Rightarrow</math>   

<math> \frac{\dot{C}_2}{C_2} \biggl(\frac{d \ln{\lambda}_2}{dt}\biggr) </math>

<math> = </math>

<math> \biggl[ \frac{\dot{\lambda}_1}{\lambda_1} + \frac{\dot{\lambda}_2}{\lambda_2} \biggr] \biggl[ \frac{\dot{\lambda}_1}{\lambda_1} - \frac{\dot{\lambda}_2}{\lambda_2} \biggr] ( q h_1^2 )^2 </math>

 

 

<math> = </math>

<math> \biggl[ \frac{\dot{\lambda}_1}{\lambda_1} + \frac{\dot{\lambda}_2}{\lambda_2} \biggr] \frac{d\ln h_2}{dt} </math>

 

 

<math> = </math>

<math> \biggl[ \frac{\ln(\lambda_1 \lambda_2)}{dt} \biggr] \frac{d\ln h_2}{dt} </math>

or

<math> \frac{\dot{C}_2}{C_2} </math>

<math> = </math>

<math> \biggl[ \frac{\dot{\lambda}_1}{\lambda_1} + \frac{\dot{\lambda}_2}{\lambda_2} \biggr] \frac{d\ln h_2}{dt} \biggl(\frac{d \ln{\lambda}_2}{dt}\biggr)^{-1} </math>

 

 

<math> = </math>

<math> \biggl[ \frac{\dot{\lambda}_1}{\lambda_1}\biggr] \frac{d\ln h_2}{dt} \biggl(\frac{d \ln{\lambda}_2}{dt}\biggr)^{-1} + \frac{d\ln h_2}{dt} </math>


 

Whitworth's (1981) Isothermal Free-Energy Surface

© 2014 - 2021 by Joel E. Tohline
|   H_Book Home   |   YouTube   |
Appendices: | Equations | Variables | References | Ramblings | Images | myphys.lsu | ADS |
Recommended citation:   Tohline, Joel E. (2021), The Structure, Stability, & Dynamics of Self-Gravitating Fluids, a (MediaWiki-based) Vistrails.org publication, https://www.vistrails.org/index.php/User:Tohline/citation