User:Tohline/Appendix/Ramblings/T1Coordinates

From VistrailsWiki
< User:Tohline‎ | Appendix/Ramblings
Revision as of 16:04, 8 May 2010 by Tohline (talk | contribs) (Begin overview of T1 Coordinates)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search
Whitworth's (1981) Isothermal Free-Energy Surface
|   Tiled Menu   |   Tables of Content   |  Banner Video   |  Tohline Home Page   |

Relationship Between T1 Coordinates and the Equilibrium Models of HNM82

Preamble

In the mid-1990s I invested time trying to gain a better understanding of the "<math>3^\mathrm{rd}</math> Integral of Motion" that is discussed especially in the context of galaxy dynamics. For example, BT87 discuss the behavior of particle orbits in static potentials in which equipotential contours are nested oblate spheroidal surfaces with uniform eccentricity. This set of equipotential contours does not conform to, and therefore cannot be defined by, the traditional Oblate Spheroidal Coordinate system — detailed, for example, in MF53 — because in that traditional coordinate system surfaces of constant <math>\xi_1</math> are confocal rather than concentric oblate spheroids. In an effort to uncover a closed-form mathematical prescription for the "<math>3^\mathrm{rd}</math> integral" in this case, I developed an orthogonal coordinate system in which surfaces of constant <math>\xi_1</math> are concentric oblate spheroids. The properties of this T1 coordinate system are detailed in the Appendix of the original version of this H_Book. Here are two relevant links:

I have just realized (in May, 2010) that there is a connection between this T1 Coordinate system and the equipotential contours that arise from at least one of the equilibrium models of the axisymmetric structure of rotationally flattened isothermal gas clouds presented by Hayashi, Narita & Miyama (1982; hereafter HNM82). What follows is a discussion of this connection.

T1 Coordinates

A coordinate system that perfectly overlays a set of concentric oblate-spheroidal surfaces should have a radial <math>\xi_1</math> coordinate of the form,

<math> \xi_1 = \biggl[ z^2 + \biggl( \frac{\varpi}{q}\biggr)^2 \biggr]^{1/2} , </math>

where the degree of flattening of the concentric surfaces is specified by the (constant) coefficient, <math>q \equiv (a_1/a_3)</math>, where <math>a_1</math> and <math>a_3</math> are, respectively, each spheroid's semi-axes along the <math>\varpi</math> and <math>z</math> axes, respectively.


 

Whitworth's (1981) Isothermal Free-Energy Surface

© 2014 - 2021 by Joel E. Tohline
|   H_Book Home   |   YouTube   |
Appendices: | Equations | Variables | References | Ramblings | Images | myphys.lsu | ADS |
Recommended citation:   Tohline, Joel E. (2021), The Structure, Stability, & Dynamics of Self-Gravitating Fluids, a (MediaWiki-based) Vistrails.org publication, https://www.vistrails.org/index.php/User:Tohline/citation