User:Tohline/SR/Ptot QuarticSolution

From VistrailsWiki
< User:Tohline‎ | SR
Revision as of 03:23, 11 March 2010 by Tohline (talk | contribs) (→‎Quartic Equation Solution: Improve discussion of quartic solution)
Jump to navigation Jump to search
Whitworth's (1981) Isothermal Free-Energy Surface
|   Tiled Menu   |   Tables of Content   |  Banner Video   |  Tohline Home Page   |

Determining Temperature from Density and Pressure

As has been derived elsewhere, the normalized total pressure can be written as,

LSU Key.png

<math>~p_\mathrm{total} = \biggl(\frac{\mu_e m_p}{\bar{\mu} m_u} \biggr) 8 \chi^3 \frac{T}{T_e} + F(\chi) + \frac{8\pi^4}{15} \biggl( \frac{T}{T_e} \biggr)^4</math>

To solve this algebraic equation for the normalized temperature <math>T/T_e</math>, given values of the normalized total pressure <math>p_\mathrm{total}</math> and the normalized density <math>\chi</math>, we first realize that the equation can be written in the form,

<math> a_4z^4 + a_1 z - a_0 = 0 , </math>

where,

<math> z \equiv \frac{T}{T_e} , </math>

and the coefficients,

<math> a_4 \equiv \frac{8\pi^4}{15} , </math>
<math> a_1 \equiv 8\biggl(\frac{\mu_e m_p}{\bar{\mu} m_u} \biggr) \chi^3 , </math>
<math> a_0 \equiv \biggl[p_\mathrm{total} - F(\chi) \biggr] . </math>


Mathematical Manipulation

Quartic Equation Solution

Following the Summary of Ferrari's method that is presented in Wikipedia's discussion of the Quartic Function to identify the roots of an arbitrary quartic equation, we can set the coefficients of the cubic and quadratic terms both to zero and deduce that the only root that will give physically relevant temperatures — for example, real and non-negative — is,

<math> 2z = \biggl[\frac{2a_1}{a_4 W}-W^2\biggr]^{1/2} - W , </math>

where,

<math> \frac{1}{2}W^2 \equiv R^{-1/3}\biggl[R^{2/3} - \frac{a_0}{3a_4} \biggr] , </math>
<math> R \equiv \biggl( \frac{a_1}{4a_4} \biggr)^2 \biggl[ 1 + (1 + \lambda^3)^{1/2} \biggr] , </math>
<math> \lambda^3 \equiv \frac{2^8 a_0^3 a_4}{3^3 a_1^4} . </math>

Now, defining,

<math> \phi \equiv \frac{2a_1}{a_4 W^3} ~~~~~\Rightarrow ~~~~~ W = 2\biggl(\frac{a_1}{4a_4 \phi} \biggr)^{1/3} , </math>

and realizing that, from one of the above expressions,

<math> \frac{1}{2}W^2 \equiv \biggl[ \frac{a_1}{2^8 a_4 R}\biggr]^{1/3}\biggl[\biggl( \frac{2^4 a_4^2 R}{a_1^2}\biggr)^{2/3} - \biggl( \frac{2^8 a_0^3 a_4}{3^3 a_1^4} \biggr)^{1/3} \biggr] = \biggl[ \frac{a_1}{2^8 a_4 R}\biggr]^{1/3} \biggl\{ \biggl[ 1 + (1 + \lambda^3)^{1/2} \biggr]^{2/3} - \lambda \biggr\} , </math>

we can rewrite the quartic solution in the form,

<math> z = \biggl(\frac{a_1}{4a_4}\biggr) \phi^{-1/3}\biggl[ (\phi - 1)^{1/2} - 1 \biggr] </math>
<math> \phi^2 = \frac{2^2 a_1^2}{2^3 a_4^2} \biggl( \frac{2^8 a_4 R}{a_1} \biggr) \biggl\{ \biggl[ 1 + (1 + \lambda^3)^{1/2} \biggr]^{2/3} - \lambda \biggr\}^{-3} = \biggl( \frac{2a_1}{a_4} \biggr)^3 \biggl[ 1 + (1 + \lambda^3)^{1/2} \biggr] \biggl\{ \biggl[ 1 + (1 + \lambda^3)^{1/2} \biggr]^{2/3} - \lambda \biggr\}^{-3} </math>

Relevant Cubic Formula

The relevant cubic equation is,

<math> y^3 +b_1 y +b_0 = 0 , </math>

where,

<math> b_1 \equiv -4a_0 ~~~~~ \mathrm{and} ~~~~~ b_0 \equiv -a_1^2 . </math>

According to mathworld.wolfram.com, the roots of a cubic equation having this form include a real root given by the expression,

<math> y_1 = \mathcal{S} + \mathcal{T} , </math>

where,

<math> \mathcal{D} \equiv \biggl( \frac{b_1}{3} \biggr)^2 + \biggl(\frac{b_0}{2}\biggr)^2 = \biggl( \frac{4a_0}{3} \biggr)^2 + \biggl(\frac{a_1^2}{2}\biggr)^2 = \biggl(\frac{a_1^2}{2}\biggr)^2 \biggl[ 1 + \biggl( \frac{8a_0}{3a_1^2} \biggr)^2 \biggr] , </math>
<math> \mathcal{S} \equiv \biggl[ -\frac{b_0}{2} + \mathcal{D}^{1/2} \biggr]^{1/3} = \biggl[ \frac{a_1^2}{2} + \mathcal{D}^{1/2} \biggr]^{1/3} = \biggl[ \frac{a_1^2}{2} \biggr]^{1/3} \biggl\{1 + \biggl[ 1 + \biggl( \frac{8a_0}{3a_1^2} \biggr)^2 \biggr]^{1/2} \biggr\}^{1/3} , </math>
<math> \mathcal{T} \equiv \biggl[ -\frac{b_0}{2} - \mathcal{D}^{1/2} \biggr]^{1/3} = \biggl[ \frac{a_1^2}{2} - \mathcal{D}^{1/2} \biggr]^{1/3} = \biggl[ \frac{a_1^2}{2} \biggr]^{1/3} \biggl\{1 - \biggl[ 1 + \biggl( \frac{8a_0}{3a_1^2} \biggr)^2 \biggr]^{1/2} \biggr\}^{1/3} . </math>

Summary

Hence, defining,

<math> \mathcal{K} \equiv \biggl( \frac{8a_0}{3a_1^2} \biggr)^2 , </math>

and

<math> f_Q(\mathcal{K}) \equiv y_1 \biggl[ \frac{2}{a_1^2} \biggr]^{1/3} = \biggl[1 + \biggl( 1 + \mathcal{K} \biggr)^{1/2} \biggr]^{1/3} + \biggl[1 - \biggl( 1 + \mathcal{K} \biggr)^{1/2} \biggr]^{1/3} , </math>

we can write the desired solution of the quartic equation as,

<math> z_3 = 2^{-7/6} a_1^{1/3} [f_Q(\mathcal{K})]^{1/2} \biggl\{ \biggl[ 8^{1/2} [f_Q(\mathcal{K})]^{-3/2} - 1 \biggr]^{1/2} -1 \biggr\} . </math>

Note that, in order for the solution, <math>z_3</math>, to be real and non-negative, the function <math>f_Q(\mathcal{K})</math> must be limited to a range of values given by the expression,

<math> 8^{1/2} [f_Q(\mathcal{K})]^{-3/2} \ge 2 </math>
<math> \Rightarrow ~~ f_Q(\mathcal{K}) \le 2^{1/3} . </math>

This, in turn, implies that the dimensionless parameter, <math>\mathcal{K}</math>, must be limited to values,

<math> \mathcal{K} \ge 0 . </math>

Our solution takes on a somewhat cleaner form if we define a function,

<math> g_Q(\mathcal{K}) \equiv 2^{1/2} f_Q^{-3/2} = 2^{1/2} \biggl\{ \biggl[1 + \biggl( 1 + \mathcal{K} \biggr)^{1/2} \biggr]^{1/3} + \biggl[1 - \biggl( 1 + \mathcal{K} \biggr)^{1/2} \biggr]^{1/3} \biggr\}^{-3/2} , </math>

which is limited to values,

<math> g_Q(\mathcal{K}) \ge 1 . </math>

Then we can write,

<math> z_3 a_1^{-1/3} = \frac{1}{2}\biggl[\frac{1}{g_Q(\mathcal{K})}\biggr]^{1/3} \biggl\{ \biggl[ 2g_Q(\mathcal{K}) - 1 \biggr]^{1/2} -1 \biggr\} . </math>


Physical Implications

Clearly, a key dimensionless physical parameter for this problem is,

<math> \mathcal{K} \equiv \biggl( \frac{8a_0}{3a_1^2} \biggr)^2 = \biggl\{ \frac{1}{5} \biggl[ \frac{\pi^2}{3} \biggl(\frac{\bar{\mu} m_u}{\mu_e m_p} \biggr) \biggr]^2 \biggl[ \frac{p_\mathrm{total} - F(\chi)}{\chi^6} \biggr] \biggr\}^2 . </math>

And, since <math>z_3 \propto T</math> and <math>a_1 \propto \rho</math>, the above solution tells us that the product <math>T \rho^{-1/3}</math> can be expressed as a function of this single parameter, <math>\mathcal{K}</math>.


Related Wikepedia Links

Quartic Function
mathworld.wolfram.com

Whitworth's (1981) Isothermal Free-Energy Surface

© 2014 - 2021 by Joel E. Tohline
|   H_Book Home   |   YouTube   |
Appendices: | Equations | Variables | References | Ramblings | Images | myphys.lsu | ADS |
Recommended citation:   Tohline, Joel E. (2021), The Structure, Stability, & Dynamics of Self-Gravitating Fluids, a (MediaWiki-based) Vistrails.org publication, https://www.vistrails.org/index.php/User:Tohline/citation