User:Tohline/Appendix/Ramblings/Hybrid Scheme Implications
Implications of Hybrid Scheme
| Tiled Menu | Tables of Content | Banner Video | Tohline Home Page | |
Background
Key H_Book Chapters
[Ref01] Inertial-Frame Euler Equation
[Ref02] Traditional Description of Rotating Reference Frame
[Ref03] Hybrid Advection Scheme
[Ref04] Riemann S-type Ellipsoids
[Ref05] Korycansky and Papaloizou (1996)
Principal Governing Equations
Quoting from [Ref01] … Among the principal governing equations we have included the inertial-frame,
Lagrangian Representation
of the Euler Equation,
<math>\frac{d\vec{v}}{dt} = - \frac{1}{\rho} \nabla P - \nabla \Phi</math> |
[EFE], Chap. 2, §11, p. 20, Eq. (38)
[BLRY07], p. 13, Eq. (1.55)
Shifting into a rotating frame characterized by the angular velocity vector,
<math>~\vec{\Omega}_f \equiv \hat\mathbf{k} \Omega_f \, ,</math>
and applying the operations that are specified in the first few subsections of [Ref02], we recognize the following relationships …
<math>~\vec{v}_\mathrm{inertial}</math> |
<math>~=</math> |
<math>~\vec{v}_\mathrm{rot} + {\vec\Omega}_f \times \vec{x} \, ,</math> |
<math>~\biggl[ \frac{d \vec{v}}{dt} \biggr]_\mathrm{inertial}</math> |
<math>~=</math> |
<math>~ \biggl[ \frac{d \vec{v}}{dt} \biggr]_\mathrm{rot} + 2{\vec\Omega}_f \times {\vec{v}}_\mathrm{rot} + {\vec\Omega}_f \times ({\vec\Omega}_f \times \vec{x}) </math> |
|
<math>~=</math> |
<math>~ \biggl[ \frac{d \vec{v}}{dt} \biggr]_\mathrm{rot} + 2{\vec\Omega}_f \times {\vec{v}}_\mathrm{rot} - \frac{1}{2} \nabla | {\vec\Omega}_f \times \vec{x}|^2 </math> |
|
<math>~=</math> |
<math>~ \biggl[ \frac{\partial \vec{v}}{\partial t} \biggr]_\mathrm{rot} + ({\vec{v}}_\mathrm{rot} \cdot \nabla){\vec{v}}_\mathrm{rot} + 2{\vec\Omega}_f \times {\vec{v}}_\mathrm{rot} - \frac{1}{2} \nabla | {\vec\Omega}_f \times \vec{x}|^2 \, .</math> |
Making this substitution on the left-hand-side of the above-specified "Lagrangian Representation of the Euler Equation," we obtain what we have referred to also in [Ref02] as the,
Eulerian Representation
of the Euler Equation
as viewed from a Rotating Reference Frame
<math>\biggl[\frac{\partial\vec{v}}{\partial t}\biggr]_\mathrm{rot} + ({\vec{v}}_\mathrm{rot}\cdot \nabla) {\vec{v}}_\mathrm{rot}= - \frac{1}{\rho} \nabla P - \nabla \biggl[\Phi - \frac{1}{2}|{\vec{\Omega}}_f \times \vec{x}|^2 \biggr] - 2{\vec{\Omega}}_f \times {\vec{v}}_\mathrm{rot} \, .</math>
This form of the Euler equation also appears early in [Ref05], where we set up a discussion of the paper by Korycansky & Papaloizou (1996, ApJS, 105, 181; hereafter KP96). But, for now, let's back up a couple of steps and retain the total time derivative on the left-hand-side. That is, let's select as the foundation expression the,
Lagrangian Representation
of the Euler Equation
as viewed from a Rotating Reference Frame
<math>~\biggl[ \frac{d \vec{v}}{dt} \biggr]_\mathrm{rot} </math> |
<math>~=</math> |
<math>~- \frac{1}{\rho} \nabla P - \nabla \Phi - 2{\vec\Omega}_f \times {\vec{v}}_\mathrm{rot} - {\vec\Omega}_f \times ({\vec\Omega}_f \times \vec{x}) \, ,</math> |
[EFE], Chap. 2, §12, p. 25, Eq. (62) |
which also serves as the foundation of most of our [Ref03] discussions.
Exercising the Hybrid Scheme
Let's begin by using <math>~{\mathbf{u}}'</math>, instead of <math>~{\vec{v}}_\mathrm{rot}</math>, to represent the fluid velocity vector as viewed from the rotating frame of reference. Our foundation expression becomes,
<math>~\frac{d \bold{u}'}{dt} </math> |
<math>~=</math> |
<math>~- \frac{1}{\rho} \nabla P - \nabla \Phi - 2{\vec\Omega}_f \times \bold{u}' - {\vec\Omega}_f \times ({\vec\Omega}_f \times \vec{x}) </math> |
Next, using [Ref03] as a guide, let's focus on tracking angular momentum. We need to break the vector momentum equation, as well as the velocity vectors, into their <math>~(\bold{\hat{e}}_\varpi, \bold{\hat{e}}_\varphi, \bold{\hat{k}})</math> components.
NOTE: For the time being, we will write the velocity vector in terms of generic components, namely, <math>~\bold{u}' = \bold{\hat{e}}_\varpi u'_\varpi + \bold{\hat{e}}_\varphi u'_\varphi + \bold{\hat{k}}u'_z \, .</math> But, eventually, we want to explicitly insert the rotating-frame velocity that underpins the equilibrium properties of Riemann S-type ellipsoids. In Chap. 7, §47, Eq. 1 (p. 130) of [EFE], this is given in Cartesian coordinates, so we will need to convert his expressions to the equivalent cylindrical-coordinate components. |
The time-derivative on the left-hand-side of our foundation expression becomes,
<math> \frac{d\mathbf{u'}}{dt} </math> |
<math>~=~</math> |
<math> \frac{d}{dt} [ \mathbf{\hat{e}}_\varpi u'_\varpi + \mathbf{\hat{e}}_\varphi u'_\varphi + \mathbf{\hat{k}} u'_z ] </math> |
|
<math>~=~</math> |
<math> \mathbf{\hat{e}}_\varpi \frac{d u'_\varpi}{dt} + \mathbf{\hat{e}}_\varphi \frac{d u'_\varphi}{dt} + \mathbf{\hat{k}} \frac{d u'_z}{dt} + ( u'_\varpi) \frac{d}{dt}\mathbf{\hat{e}}_\varpi + ( u'_\varphi) \frac{d}{dt}\mathbf{\hat{e}}_\varphi </math> |
|
<math>~=~</math> |
<math> \mathbf{\hat{e}}_\varpi \frac{d u'_\varpi}{dt} + \mathbf{\hat{e}}_\varphi \frac{d u'_\varphi}{dt} + \mathbf{\hat{k}} \frac{d u'_z}{dt} + \mathbf{\hat{e}}_\varphi(u'_\varpi) \frac{u'_\varphi}{\varpi} - \mathbf{\hat{e}}_\varpi(u'_\varphi) \frac{u'_\varphi}{\varpi} \, . </math> |
We also recognize that, when expressed in cylindrical coordinates,
<math> ~{\vec{\Omega}}_f \times \vec{x} </math> |
<math>~=~</math> |
<math> {\hat\mathbf{k}} \Omega_f\times (\mathbf{\hat{e}}_\varpi \varpi + \mathbf{\hat{k}}z) = \mathbf{\hat{e}}_\varphi \Omega_f \varpi \, , </math> |
<math> {\vec{\Omega}}_f \times ({\vec{\Omega}}_f \times \vec{x}) </math> |
<math>~=~</math> |
<math> \hat{\mathbf{k}} \Omega_f \times ( \mathbf{\hat{e}}_\varphi \Omega_f \varpi ) = - \mathbf{\hat{e}}_\varpi \Omega_f^2 \varpi \, , </math> |
<math> {\vec{\Omega}}_f \times {\mathbf{u'}} </math> |
<math>~=~</math> |
<math> {\hat\mathbf{k}} \Omega_f\times (\mathbf{\hat{e}}_\varpi u'_\varpi + \mathbf{\hat{e}}_\varphi u'_\varphi + \mathbf{\hat{k}}u'_z) = \mathbf{\hat{e}}_\varphi \Omega_f u'_\varpi - \mathbf{\hat{e}}_\varpi \Omega_f u'_\varphi \, , </math> |
<math> {\vec{v}}_\mathrm{inertial} </math> |
<math>~=~</math> |
<math> \mathbf{u'} + \mathbf{\hat{e}}_\varphi \Omega_f \varpi \, . </math> |
The set of scalar momentum-component equations is obtained by "dotting" each unit vector into the vector equation.
<math>\mathbf{\hat{e}}_\varpi:</math> |
<math>~\frac{d u'_\varpi}{dt} - \frac{(u'_\varphi)^2}{\varpi} </math> |
<math>~=</math> |
<math>~- \mathbf{\hat{e}}_\varpi \cdot \frac{\nabla P}{\rho} - \mathbf{\hat{e}}_\varpi \cdot \nabla \Phi + 2 \biggl[ \Omega_f u'_\varphi \biggr] + \Omega_f^2 \varpi </math> |
<math>~\Rightarrow ~~~ \frac{d u'_\varpi}{dt} </math> |
<math>~=</math> |
<math>~- \mathbf{\hat{e}}_\varpi \cdot \frac{\nabla P}{\rho} - \mathbf{\hat{e}}_\varpi \cdot \nabla \Phi + \frac{1}{\varpi} \biggl[ (u'_\varphi)^2 + 2 \Omega_f u'_\varphi \varpi + \Omega_f^2 \varpi^2 \biggr]</math> |
|
|
<math>~=</math> |
<math>~ - \mathbf{\hat{e}}_\varpi \cdot \frac{\nabla P}{\rho} - \mathbf{\hat{e}}_\varpi \cdot \nabla \Phi + \frac{1}{\varpi} (u'_\varphi + \Omega_f \varpi)^2 \, . </math> |
|
<math>\mathbf{\hat{e}}_\varphi:</math> |
<math>~\frac{d u'_\varphi}{dt} + \frac{u'_\varpi u'_\varphi}{\varpi} </math> |
<math>~=</math> |
<math>~- \mathbf{\hat{e}}_\varphi \cdot \frac{\nabla P}{\rho} - \mathbf{\hat{e}}_\varphi \cdot \nabla \Phi - 2\biggl[ \Omega_f u'_\varpi \biggr] </math> |
(mult. thru by ϖ) <math>~\Rightarrow ~~~\frac{d (\varpi u'_\varphi )}{dt} </math> |
<math>~=</math> |
<math>~- \mathbf{\hat{e}}_\varphi \cdot \frac{\varpi \nabla P}{\rho} - \mathbf{\hat{e}}_\varphi \cdot \varpi \nabla \Phi - 2 \Omega_f \varpi u'_\varpi </math> |
© 2014 - 2021 by Joel E. Tohline |