User:Tohline/Appendix/CGH/KAH2001
Hologram Reconstruction Using a Digital Micromirror Device
| Tiled Menu | Tables of Content | Banner Video | Tohline Home Page | |
Fresnel Diffraction
According to the Wikipedia description of Fresnel diffraction, "… the electric field diffraction pattern at a point <math>~(x, y, z)</math> is given by …" the expression,
Given the intensity immediately in front of the aperture, <math>~E(x', y', 0)</math>, this integral expression generates the intensity, <math>~E(x, y, z)</math>, on the image plane whose distance from the aperture is, <math>~z</math>. |
<math>~E(x, y, z)</math> |
<math>~=</math> |
<math>~ \frac{1}{i \lambda} \iint_{-\infty}^\infty E(x', y', 0) \biggl[ \frac{e^{i k r}}{r}\biggr] \cos\theta~ dx' dy'\, , </math> |
where, <math>~E(x', y', 0)</math> is the electric field at the aperture, <math>~k \equiv 2\pi/\lambda</math> is the wavenumber, and,
<math>~r</math> |
<math>~\equiv</math> |
<math>~ \biggl[ z^2 + (x - x')^2 + ( y - y')^2 \biggr]^{1 / 2} = z \biggl[ 1 + \frac{(x - x')^2 + ( y - y')^2}{z^2} \biggr]^{1 / 2} = z\biggl[ 1 + \frac{(x - x')^2 + ( y - y')^2}{2z^2} - \frac{[(x - x')^2 + ( y - y')^2]^2}{8z^4} + \cdots\biggr] \, . </math> |
(The infinite series in this last expression results from enlisting the binomial theorem.) For simplicity, in the discussion that follows we will assume — as in §2 of KAH2001 — that the aperture is illuminated by a monochromatic plane wave that is impinging normally onto the aperture, in which case, the angle, <math>~\theta = 0</math>.
In the Fresnel approximation, the assumption is made that, in the series expansion for <math>~r</math>, all terms beyond the first two are very small in magnitude relative to the second term. Adopting this approximation — and setting <math>~\theta = 0</math> — then leads to the expression,
<math>~E(x, y, z)</math> |
<math>~\approx</math> |
<math>~ \frac{1}{i z \lambda} \iint_{-\infty}^\infty E(x', y', 0) ~\biggl[ 1 - \frac{(x - x')^2 + ( y - y')^2}{2z^2} \biggr] \exp\biggl\{ i k z\biggl[ 1 + \frac{(x - x')^2 + ( y - y')^2}{2z^2}\biggr] \biggr\}~ dx' dy' </math> |
|
<math>~=</math> |
<math>~ \frac{e^{i k z}}{i z \lambda} \iint_{-\infty}^\infty E(x', y', 0) ~\biggl[ 1 - \frac{(x - x')^2 + ( y - y')^2}{2z^2} \biggr] \exp\biggl\{\frac{ i k}{2 z}\biggl[ (x - x')^2 + ( y - y')^2 \biggr] \biggr\}~ dx' dy' \, . </math> |
If "… for the <math>~r</math> in the denominator we go one step further, and approximate it with only the first term …", then our expression results in the Fresnel diffraction integral,
<math>~E(x, y, z)</math> |
<math>~\approx</math> |
<math>~ \frac{e^{i k z}}{i z \lambda} \iint_{-\infty}^\infty E(x', y', 0) ~ \exp\biggl\{\frac{ i k}{2 z}\biggl[ (x - x')^2 + ( y - y')^2 \biggr] \biggr\}~ dx' dy' \, . </math> |
Optical Field in the Image Plane
In a paper titled, Hologram reconstruction using a digital micromirror device, T. Kreis, P. Aswendt, & R. Höfling (2001) — Optical Engineering, vol. 40, no. 6, 926 - 933, hereafter, KAH2001 — present some background theoretical development that was used to underpin work of the group at UT's Southwestern Medical Center at Dallas that Richard Muffoletto and I visited circa 2004.
This same integral expression — with a slightly different leading normalization factor — appears as equation (5) of KAH2001. Referring to it as the Fresnel transform expression for the "optical field, <math>~B(x, y)</math>, in the image plane at a distance <math>~d</math> from the [aperture]," they write,
Given the intensity immediately in front of the aperture, <math>~U(\xi, \eta)</math>, this integral expression generates the intensity, <math>~B(x, y)</math>, on the image plane whose distance from the aperture is, <math>~d</math>. |
<math>~B(x,y)</math> |
<math>~=</math> |
<math>~ \frac{e^{i k d}}{i k d} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} U(\xi,\eta) \times \exp\biggl\{ \frac{i \pi}{d \lambda} \biggl[ (x - \xi)^2 + (y-\eta)^2 \biggr] \biggr\} d\xi d\eta </math> |
|
<math>~=</math> |
<math>~ \biggl[\frac{e^{i k d}}{i k d} \biggr] I_\xi(x) \cdot I_\eta(y) \, , </math> |
with,
<math>~I_\xi(x)</math> |
<math>~=</math> |
<math>~ \int_{-\infty}^{\infty} V(\xi) \times \exp\biggl[ \frac{i \pi}{d \lambda} (x - \xi)^2 \biggr] d\xi \, , </math> |
<math>~I_\eta(y)</math> |
<math>~=</math> |
<math>~ \int_{-\infty}^{\infty} W(\eta) \times \exp\biggl[ \frac{i \pi}{d \lambda} (y - \eta)^2 \biggr] d\eta \, , </math> |
and where "… the optical field immediately in front of the [aperture]" is assumed to be of the form, <math>~U(\xi,\eta) = V(\xi)\cdot W(\eta)</math>. Following KAH2001 — especially the discussion associated with their equations (7) - (10) — if we make the substitutions,
<math>~\mu \equiv \frac{x}{d\lambda} \, ,</math> |
and, |
<math>~\alpha \equiv \frac{\sqrt{2} \xi}{ \sqrt{d \lambda} } - \sqrt{2d\lambda} ~\mu </math> <math>~\Rightarrow ~~~ d\xi = \biggl(\frac{d \lambda}{2}\biggr)^{1 / 2} d\alpha \, ,</math> |
the expression for <math>~I_\xi(x)</math> may be written as,
<math>~I_\xi(x)</math> |
<math>~=</math> |
<math>~ \int_{-\infty}^{\infty} V(\xi) \times \exp\biggl\{ \frac{i \pi}{d \lambda} \biggl[ d \lambda \mu - \frac{\sqrt{d\lambda}}{\sqrt{2}} \biggl( \alpha + \sqrt{2 d\lambda}~\mu \biggr) \biggr]^2 \biggr\} \biggl( \frac{d \lambda}{2}\biggr)^{1 / 2} d\alpha </math> |
|
<math>~=</math> |
<math>~ \int_{-\infty}^{\infty} V(\xi) \times \exp\biggl\{ i \pi d \lambda \biggl[ \mu - \frac{1}{\sqrt{2d \lambda}} \biggl( \alpha + \sqrt{2 d\lambda}~\mu \biggr) \biggr]^2 \biggr\} \biggl( \frac{d \lambda}{2}\biggr)^{1 / 2} d\alpha </math> |
|
<math>~=</math> |
<math>~ \biggl( \frac{d \lambda}{2}\biggr)^{1 / 2} \int_{-\infty}^{\infty} V(\xi) \times \exp\biggl[ \frac{i \pi \alpha^2}{2} \biggr] d\alpha \, . </math> |
The expression for <math>~I_\eta(y)</math> may be rewritten similarly.
As a point of comparison, in our accompanying discussion of 1D parallel apertures (specifically, the subsection titled, Case 1), we have presented the following expression for the y-coordinate variation of the optical field immediately in front of the aperture:
where,
In other words, making the substitution, <math>~(2\pi/\lambda) \rightarrow k</math>, and recognizing that, <math>~d \leftrightarrow Z</math>, our expression becomes,
|
SWMED
In a paper titled, Dynamic holographic 3-D image projection, M. L. Huebschman, B. Munjuluri & H. R. Garner (2003) — Optics Express, vol. 11, no. 5, 437 - 445, hereafter, SWMED03 — describe the experimental 3-D projection system that was developed at UT's Southwestern Medical Center at Dallas. This is the research group that Richard Muffoletto and I visited circa 2004.
In §4 of SWMED03 we find this general description:
The following integral expression is "… the mathematical transform containing the wave physics of monochromatic light emanating from each object point, passing through the optical system and being superimposed at each point in the holographic plane. It represents the integration over the object of spherical wave solutions of the Helmholtz form of the wave equation … with additional phase shifts due to a spherical converging lens in the light pathway."
<math>~U_s(x, y, 0)</math> |
<math>~=</math> |
<math>~ \int_{\mathrm{V}'} U(x', y', z')~ \biggl[\frac{e^{-ikr} }{r}\biggr]~\times \exp\biggl[ \frac{ik(x^2 + y^2)}{2f} \biggr]~dV^' </math> |
|
<math>~=</math> |
<math>~ \int_{\mathrm{V}'} dV^' ~ \frac{U(x', y', z')}{\sqrt{ {z'}^2 + (x - x')^2 + (y - y')^2 }}~ \exp\biggl[-ik \biggl( \sqrt{ {z'}^2 + (x - x')^2 + (y - y')^2 } - \frac{x^2 + y^2}{2f} \biggr) \biggr] \, . </math> |
[The second of these two expressions has the form that appears as equation (1) in SWMED03; the first has been rewritten here in a form that can more easily be compared with related expressions that are found in the above subsections of this chapter.] As is explained in SWMED03, "… <math>~U_s(x, y, 0)</math> represents the intensity amplitude at a point in the hologram plane — i.e., immediately in front of the aperture — and <math>~U(x', y', z')</math> is the intensity amplitude at a point on the objects in the 3-D scene of volume V' … The z'-axis is normal to the center of the hologram plane and extends through the center of the reconstructed 3-D scene volume. The wave number of the light is given by k and f is the focal length of the converging lens.
See Also
- Updated Table of Contents
- Tohline, J. E., (2008) Computing in Science & Engineering, vol. 10, no. 4, pp. 84-85 — Where is My Digital Holographic Display? [ PDF ]
© 2014 - 2021 by Joel E. Tohline |