User:Tohline/Appendix/Ramblings/BiPolytrope51ContinueSearch
Continue Search for Marginally Unstable (5,1) Bipolytropes
This Ramblings Appendix chapter — see also, various trials — provides some detailed trial derivations in support of the accompanying, thorough discussion of this topic.
| Tiled Menu | Tables of Content | Banner Video | Tohline Home Page | |
Key Differential Equation
In an accompanying discussion, we derived the so-called,
Linear Adiabatic Wave (or Radial Pulsation) Equation
<math>~ \frac{d^2x}{dr_0^2} + \biggl[\frac{4}{r_0} - \biggl(\frac{g_0 \rho_0}{P_0}\biggr) \biggr] \frac{dx}{dr_0} + \biggl(\frac{\rho_0}{\gamma_\mathrm{g} P_0} \biggr)\biggl[\omega^2 + (4 - 3\gamma_\mathrm{g})\frac{g_0}{r_0} \biggr] x = 0 </math> |
whose solution gives eigenfunctions that describe various radial modes of oscillation in spherically symmetric, self-gravitating fluid configurations. After adopting an appropriate set of variable normalizations — as detailed here — this becomes,
<math>~0</math> |
<math>~=</math> |
<math>~ \frac{d^2x}{dr*^2} + \biggl\{ 4 -\biggl(\frac{\rho^*}{P^*}\biggr)\frac{ M_r^*}{(r^*)}\biggr\}\frac{1}{r^*} \frac{dx}{dr*} + \biggl(\frac{\rho^*}{ P^* } \biggr)\biggl\{ \frac{2\pi \sigma_c^2}{3\gamma_\mathrm{g}} ~-~\frac{\alpha_\mathrm{g} M_r^*}{(r^*)^3}\biggr\} x \, , </math> |
where, <math>~\alpha_g \equiv (3 - 4/\gamma_g)</math>.
Applied to the Core
As we have already summarized in an accompanying discussion, throughout the core we have,
<math>~r^*</math> |
<math>~=</math> |
<math>~\biggl( \frac{3}{2\pi} \biggr)^{1/2} \xi \, ;</math> |
<math>~\frac{\rho^*}{P^*}</math> |
<math>~=</math> |
<math>~\biggl( 1 + \frac{1}{3}\xi^2 \biggr)^{1 / 2} \, ;</math> |
<math>~\frac{M_r^*}{r^*}</math> |
<math>~=</math> |
<math>~ 2 \xi^2 \biggl( 1 + \frac{1}{3}\xi^2 \biggr)^{-3/2} \, . </math> |
So the relevant core LAWE becomes,
<math>~0</math> |
<math>~=</math> |
<math>~ \biggl( \frac{2\pi}{3} \biggr) \frac{d^2x}{d\xi^2} + \biggl( \frac{2\pi}{3} \biggr) \biggl\{ 4 - \biggl( 1 + \frac{1}{3}\xi^2 \biggr)^{1 / 2} \biggl[ 2 \xi^2 \biggl( 1 + \frac{1}{3}\xi^2 \biggr)^{-3 / 2} \biggr]\biggr\}\frac{1}{\xi} \frac{dx}{d\xi} + \biggl( 1 + \frac{1}{3}\xi^2 \biggr)^{1 / 2}\biggl\{ \frac{2\pi \sigma_c^2}{3\gamma_\mathrm{g}} ~-~\biggl( \frac{2\pi}{3} \biggr)\frac{\alpha_\mathrm{g} }{\xi^2} \biggl[ 2 \xi^2 \biggl( 1 + \frac{1}{3}\xi^2 \biggr)^{-3 / 2} \biggr] \biggr\} x </math> |
<math>~\Rightarrow ~~~ 0</math> |
<math>~=</math> |
<math>~ \frac{1}{2}\cdot \frac{d^2x}{d\xi^2} + \biggl[ 2 - \xi^2 \biggl( 1 + \frac{1}{3}\xi^2 \biggr)^{-1} \biggr] \frac{1}{\xi} \frac{dx}{d\xi} + \biggl( 1 + \frac{1}{3}\xi^2 \biggr)^{1 / 2}\biggl[ \frac{\sigma_c^2}{2\gamma_\mathrm{g}} ~-~\alpha_\mathrm{g} \biggl( 1 + \frac{1}{3}\xi^2 \biggr)^{-3 / 2} \biggr] x \, . </math> |
Now, following our separate discussion of an analytic solution to this LAWE, we try,
<math>~x_P\biggr|_\mathrm{core}</math> |
<math>~\equiv</math> |
<math>~1 - \frac{\xi^2}{15}</math> |
<math>~\Rightarrow~~~\frac{dx_P}{d\xi}\biggr|_\mathrm{core}</math> |
<math>~\equiv</math> |
<math>~- \frac{2\xi}{15} </math> |
<math>~\Rightarrow~~~\frac{d\ln x_P}{d\ln \xi}\biggr|_\mathrm{core}</math> |
<math>~\equiv</math> |
<math>~- \frac{2\xi^2}{15} \biggl[ \frac{(15 - \xi^2)}{15} \biggr]^{-1} = - \frac{2\xi^2}{(15 - \xi^2)} \, .</math> |
Plugging this trial function into the relevant LAWE gives,
LAWE |
<math>~=</math> |
<math>~ \frac{1}{2} \biggl( -\frac{2}{3\cdot 5}\biggr) + \biggl( -\frac{2}{3\cdot 5}\biggr)\biggl[ 2 - \xi^2 \biggl( 1 + \frac{1}{3}\xi^2 \biggr)^{-1} \biggr] + \biggl( 1 + \frac{1}{3}\xi^2 \biggr)^{1 / 2}\biggl[ \frac{\sigma_c^2}{2\gamma_\mathrm{g}} ~-~\alpha_\mathrm{g} \biggl( 1 + \frac{1}{3}\xi^2 \biggr)^{-3 / 2} \biggr] \biggl[1 - \frac{\xi^2}{15}\biggr] </math> |
|
<math>~=</math> |
<math>~ - \frac{1}{3} + \biggl( \frac{2}{3\cdot 5}\biggr)\biggl[ \xi^2 \biggl( 1 + \frac{1}{3}\xi^2 \biggr)^{-1} \biggr] + \biggl( 1 + \frac{1}{3}\xi^2 \biggr)^{1 / 2}\biggl[ \frac{\sigma_c^2}{2\gamma_\mathrm{g}} ~-~\alpha_\mathrm{g} \biggl( 1 + \frac{1}{3}\xi^2 \biggr)^{-3 / 2} \biggr] \biggl[1 - \frac{\xi^2}{15}\biggr] </math> |
Now, if we set <math>~\sigma_c^2 = 0</math> and <math>~\gamma_g = \gamma_c = \tfrac{6}{5} ~~\Rightarrow ~~ \alpha_g = -1/3</math>, we find that the terms on the RHS sum to zero. It therefore appears that we have identified a dimensionless displacement function that satisfies the core LAWE.
Applied to the Envelope
And as we have also summarized in the same accompanying discussion, throughout the envelope we have,
<math>~r^*</math> |
<math>~=</math> |
<math>~\biggl( \frac{\mu_e}{\mu_c} \biggr)^{-1} \theta^{-2}_i (2\pi)^{-1/2}\eta \, ;</math> |
<math>~\frac{\rho^*}{P^*}</math> |
<math>~=</math> |
<math>~ \biggl( \frac{\mu_e}{\mu_c} \biggr) \theta^{-1}_i \phi(\eta)^{-1} \, ; </math> |
<math>~\frac{M_r^*}{r^*}</math> |
<math>~=</math> |
<math>~ 2 \biggl( \frac{\mu_e}{\mu_c} \biggr)^{-1} \theta_i \biggl(-\eta \frac{d\phi}{d\eta} \biggr) \, . </math> |
So the relevant envelope LAWE becomes,
<math>~\mathrm{LAWE}</math> |
<math>~=</math> |
<math>~ \frac{d^2x}{dr*^2} + \biggl\{ 4 -\biggl(\frac{\rho^*}{P^*}\biggr)\frac{ M_r^*}{r^*}\biggr\}\frac{1}{r^*} \frac{dx}{dr*} + \biggl(\frac{\rho^*}{ P^* } \biggr)\biggl\{ \frac{2\pi \sigma_c^2}{3\gamma_\mathrm{g}} ~-~\frac{\alpha_\mathrm{g} M_r^*}{(r^*)^3}\biggr\} x </math> |
|
<math>~=</math> |
<math>~ \biggl[ \biggl( \frac{\mu_e}{\mu_c} \biggr)^{-1} \theta^{-2}_i (2\pi)^{-1/2} \biggr]^{-2}\frac{d^2x}{d\eta^2} + \biggl\{ 4 - \biggl[ \biggl( \frac{\mu_e}{\mu_c} \biggr) \theta^{-1}_i \phi^{-1}\biggr] \biggl[ 2 \biggl( \frac{\mu_e}{\mu_c} \biggr)^{-1} \theta_i \biggl(-\eta \frac{d\phi}{d\eta} \biggr) \biggr] \biggr\}\biggl[ \biggl( \frac{\mu_e}{\mu_c} \biggr)^{-1} \theta^{-2}_i (2\pi)^{-1/2} \biggr]^{-2}\frac{1}{\eta} \frac{dx}{d\eta} </math> |
|
|
<math>~ + \biggl[ \biggl( \frac{\mu_e}{\mu_c} \biggr) \theta^{-1}_i \phi^{-1}\biggr]\biggl\{ \frac{2\pi \sigma_c^2}{3\gamma_\mathrm{g}} ~-~\frac{\alpha_\mathrm{g}}{\eta^2} \biggl[ 2 \biggl( \frac{\mu_e}{\mu_c} \biggr)^{-1} \theta_i \biggl(-\eta \frac{d\phi}{d\eta} \biggr) \biggr] \biggl[ \biggl( \frac{\mu_e}{\mu_c} \biggr)^{-1} \theta^{-2}_i (2\pi)^{-1/2} \biggr]^{-2}\biggr\} x </math> |
<math>~\Rightarrow ~~~ \biggl[ \biggl( \frac{\mu_e}{\mu_c} \biggr)^{2} \theta^{4}_i (2\pi) \biggr]^{-1} \cdot~ \mathrm{LAWE}</math> |
<math>~=</math> |
<math>~ \frac{d^2x}{d\eta^2} + \biggl\{ 4 - \biggl[ \biggl( \frac{\mu_e}{\mu_c} \biggr) \theta^{-1}_i \phi^{-1}\biggr] \biggl[ 2 \biggl( \frac{\mu_e}{\mu_c} \biggr)^{-1} \theta_i \biggl(-\eta \frac{d\phi}{d\eta} \biggr) \biggr] \biggr\} \frac{1}{\eta} \frac{dx}{d\eta} </math> |
|
|
<math>~ + \biggl[ \biggl( \frac{\mu_e}{\mu_c} \biggr) \theta^{-1}_i \phi^{-1}\biggr]\biggl\{ \frac{2\pi \sigma_c^2}{3\gamma_\mathrm{g}}\biggl[ \biggl( \frac{\mu_e}{\mu_c} \biggr)^{2} \theta^{4}_i (2\pi) \biggr]^{-1} ~-~\frac{\alpha_\mathrm{g}}{\eta^2} \biggl[ 2 \biggl( \frac{\mu_e}{\mu_c} \biggr)^{-1} \theta_i \biggl(-\eta \frac{d\phi}{d\eta} \biggr) \biggr] \biggr\} x </math> |
|
<math>~=</math> |
<math>~ \frac{d^2x}{d\eta^2} + \biggl\{ 4 - \biggl[ 2 \biggl(-\frac{d\ln \phi}{d\ln \eta} \biggr) \biggr] \biggr\} \frac{1}{\eta} \frac{dx}{d\eta} + \biggl\{ \frac{\sigma_c^2}{3\gamma_\mathrm{g}} \biggl[ \biggl( \frac{\mu_e}{\mu_c} \biggr)^{-1} \theta^{-5}_i \phi^{-1}\biggr] ~-~\frac{\alpha_\mathrm{g}}{\eta^2} \biggl[ 2 \biggl(- \frac{d\ln \phi}{d\ln \eta} \biggr) \biggr] \biggr\} x </math> |
|
<math>~=</math> |
<math>~ \frac{d^2x}{d\eta^2} + \biggl\{ 4 - 2Q_\eta \biggr\} \frac{1}{\eta} \frac{dx}{d\eta} + \biggl\{ \frac{\sigma_c^2}{3\gamma_\mathrm{g}} \biggl[ \biggl( \frac{\mu_e}{\mu_c} \biggr)^{-1} \theta^{-5}_i \phi^{-1}\biggr] ~-~(2Q_\eta)\frac{\alpha_\mathrm{g}}{\eta^2} \biggr\} x </math> |
where,
<math>~\phi(\eta)</math> |
<math>~=</math> |
<math>~\frac{A\sin(\eta - B)}{\eta}</math> |
and |
<math>~Q_\eta</math> |
<math>~\equiv</math> |
<math>~- \frac{d\ln \phi}{d\ln\eta} = \biggl[1 - \eta\cot(\eta-B) \biggr] \, .</math> |
Notice that, if we set <math>~\sigma_c^2 = 0</math> and <math>~\gamma_g = \gamma_e = 2 ~~\Rightarrow ~~ \alpha_g = +1</math>, the envelope LAWE simplifies to the form,
<math>~ \biggl(\frac{r^*}{\eta}\biggr)^2 \cdot~ \mathrm{LAWE}</math> |
<math>~=</math> |
<math>~ \frac{d^2x}{d\eta^2} + \biggl\{ 4 - 2Q_\eta \biggr\} \frac{1}{\eta} \frac{dx}{d\eta} - \biggl\{ \frac{2Q_\eta}{\eta^2} \biggr\} x \, . </math> |
In yet another Ramblings Appendix derivation we have explored a trial dimensionless displacement for the envelope of the form,
<math>~x_P\biggr|_\mathrm{env} </math> |
<math>~= \frac{3c_0}{\eta^2} \cdot Q_\eta \, .</math> |
In this case,
<math>~\frac{1}{3c_0}\cdot \frac{dx_P}{d\eta}</math> |
<math>~=</math> |
<math>~\frac{1}{\eta^2} \frac{dQ_\eta}{d\eta} - \frac{2Q_\eta}{\eta^3} </math> |
|
<math>~=</math> |
<math>~ \frac{1}{\eta^2}\biggl[\eta -\cot(\eta - b_0) +\eta\cot^2(\eta - b_0) \biggr] - \frac{2Q_\eta}{\eta^3} \, ;</math> |
<math>~\frac{1}{3c_0}\cdot \frac{d^2x_P}{d\eta^2}</math> |
<math>~=</math> |
<math>~ \frac{1}{\eta^2} \frac{d^2Q_\eta}{d\eta^2} - \frac{2}{\eta^3} \frac{dQ_\eta}{d\eta} + \frac{6Q_\eta}{\eta^4} - \frac{2}{\eta^3} \frac{dQ_\eta}{d\eta} </math> |
|
<math>~=</math> |
<math>~ \frac{1}{\eta^2} \biggl[2 -2\eta \cot(\eta - b_0) + 2\cot^2(\eta - b_0) -2\eta \cot^3(\eta - b_0) \biggr] - \frac{4}{\eta^3} \biggl[ \eta -\cot(\eta - b_0) +\eta\cot^2(\eta - b_0) \biggr] + \frac{6Q_\eta}{\eta^4} \, , </math> |
and it can be shown that the simplified envelope LAWE is perfectly satisfied.
See Also
- K. De et al. (12 October 2018, Science, Vol. 362, No. 6411, pp. 201 - 206), A Hot and Fast Ultra-stripped Supernova that likely formed a Compact Neutron Star Binary.
© 2014 - 2021 by Joel E. Tohline |