User:Tohline/Appendix/Ramblings/BiPolytrope51ContinueSearch
Continue Search for Marginally Unstable (5,1) Bipolytropes
This Ramblings Appendix chapter — see also, various trials — provides some detailed trial derivations in support of the accompanying, thorough discussion of this topic.
| Tiled Menu | Tables of Content | Banner Video | Tohline Home Page | |
Key Differential Equation
In an accompanying discussion, we derived the so-called,
Linear Adiabatic Wave (or Radial Pulsation) Equation
<math>~ \frac{d^2x}{dr_0^2} + \biggl[\frac{4}{r_0} - \biggl(\frac{g_0 \rho_0}{P_0}\biggr) \biggr] \frac{dx}{dr_0} + \biggl(\frac{\rho_0}{\gamma_\mathrm{g} P_0} \biggr)\biggl[\omega^2 + (4 - 3\gamma_\mathrm{g})\frac{g_0}{r_0} \biggr] x = 0 </math> |
whose solution gives eigenfunctions that describe various radial modes of oscillation in spherically symmetric, self-gravitating fluid configurations. After adopting an appropriate set of variable normalizations — as detailed here — this becomes,
<math>~0</math> |
<math>~=</math> |
<math>~ \frac{d^2x}{dr*^2} + \biggl\{ 4 -\biggl(\frac{\rho^*}{P^*}\biggr)\frac{ M_r^*}{(r^*)}\biggr\}\frac{1}{r^*} \frac{dx}{dr*} + \biggl(\frac{\rho^*}{ P^* } \biggr)\biggl\{ \frac{2\pi \sigma_c^2}{3\gamma_\mathrm{g}} ~-~\frac{\alpha_\mathrm{g} M_r^*}{(r^*)^3}\biggr\} x \, , </math> |
where, <math>~\alpha_g \equiv (3 - 4/\gamma_g)</math>.
Applied to the Core
As we have already summarized in an accompanying discussion, throughout the core we have,
<math>~r^*</math> |
<math>~=</math> |
<math>~\biggl( \frac{3}{2\pi} \biggr)^{1/2} \xi \, ;</math> |
<math>~\frac{\rho^*}{P^*}</math> |
<math>~=</math> |
<math>~\biggl( 1 + \frac{1}{3}\xi^2 \biggr)^{1 / 2} \, ;</math> |
<math>~\frac{M_r^*}{r^*}</math> |
<math>~=</math> |
<math>~ 2 \xi^2 \biggl( 1 + \frac{1}{3}\xi^2 \biggr)^{-3/2} \, . </math> |
So the relevant core LAWE becomes,
<math>~0</math> |
<math>~=</math> |
<math>~ \biggl( \frac{2\pi}{3} \biggr) \frac{d^2x}{d\xi^2} + \biggl( \frac{2\pi}{3} \biggr) \biggl\{ 4 - \biggl( 1 + \frac{1}{3}\xi^2 \biggr)^{1 / 2} \biggl[ 2 \xi^2 \biggl( 1 + \frac{1}{3}\xi^2 \biggr)^{-3 / 2} \biggr]\biggr\}\frac{1}{\xi} \frac{dx}{d\xi} + \biggl( 1 + \frac{1}{3}\xi^2 \biggr)^{1 / 2}\biggl\{ \frac{2\pi \sigma_c^2}{3\gamma_\mathrm{g}} ~-~\biggl( \frac{2\pi}{3} \biggr)\frac{\alpha_\mathrm{g} }{\xi^2} \biggl[ 2 \xi^2 \biggl( 1 + \frac{1}{3}\xi^2 \biggr)^{-3 / 2} \biggr] \biggr\} x </math> |
<math>~\Rightarrow ~~~ 0</math> |
<math>~=</math> |
<math>~ \frac{1}{2}\cdot \frac{d^2x}{d\xi^2} + \biggl[ 2 - \xi^2 \biggl( 1 + \frac{1}{3}\xi^2 \biggr)^{-1} \biggr] \frac{1}{\xi} \frac{dx}{d\xi} + \biggl( 1 + \frac{1}{3}\xi^2 \biggr)^{1 / 2}\biggl[ \frac{\sigma_c^2}{2\gamma_\mathrm{g}} ~-~\alpha_\mathrm{g} \biggl( 1 + \frac{1}{3}\xi^2 \biggr)^{-3 / 2} \biggr] x \, . </math> |
Now, following our separate discussion of an analytic solution to this LAWE, we try,
<math>~x_P\biggr|_\mathrm{core}</math> |
<math>~\equiv</math> |
<math>~1 - \frac{\xi^2}{15}</math> |
<math>~\Rightarrow~~~\frac{dx_P}{d\xi}\biggr|_\mathrm{core}</math> |
<math>~\equiv</math> |
<math>~- \frac{2\xi}{15} </math> |
<math>~\Rightarrow~~~\frac{d\ln x_P}{d\ln \xi}\biggr|_\mathrm{core}</math> |
<math>~\equiv</math> |
<math>~- \frac{2\xi^2}{15} \biggl[ \frac{(15 - \xi^2)}{15} \biggr]^{-1} = - \frac{2\xi^2}{(15 - \xi^2)} \, .</math> |
Plugging this trial function into the relevant LAWE gives,
LAWE |
<math>~=</math> |
<math>~ \frac{1}{2} \biggl( -\frac{2}{3\cdot 5}\biggr) + \biggl( -\frac{2}{3\cdot 5}\biggr)\biggl[ 2 - \xi^2 \biggl( 1 + \frac{1}{3}\xi^2 \biggr)^{-1} \biggr] + \biggl( 1 + \frac{1}{3}\xi^2 \biggr)^{1 / 2}\biggl[ \frac{\sigma_c^2}{2\gamma_\mathrm{g}} ~-~\alpha_\mathrm{g} \biggl( 1 + \frac{1}{3}\xi^2 \biggr)^{-3 / 2} \biggr] \biggl[1 - \frac{\xi^2}{15}\biggr] </math> |
|
<math>~=</math> |
<math>~ - \frac{1}{3} + \biggl( \frac{2}{3\cdot 5}\biggr)\biggl[ \xi^2 \biggl( 1 + \frac{1}{3}\xi^2 \biggr)^{-1} \biggr] + \biggl( 1 + \frac{1}{3}\xi^2 \biggr)^{1 / 2}\biggl[ \frac{\sigma_c^2}{2\gamma_\mathrm{g}} ~-~\alpha_\mathrm{g} \biggl( 1 + \frac{1}{3}\xi^2 \biggr)^{-3 / 2} \biggr] \biggl[1 - \frac{\xi^2}{15}\biggr] </math> |
Now, if we set <math>~\sigma_c^2 = 0</math> and <math>~\gamma_g = \gamma_c = \tfrac{6}{5} ~~\Rightarrow ~~ \alpha_g = -1/3</math>, we find that the terms on the RHS sum to zero. It therefore appears that we have identified a dimensionless displacement function that satisfies the core LAWE.
Applied to the Envelope
And as we have also summarized in the same accompanying discussion, throughout the envelope we have,
<math>~r^*</math> |
<math>~=</math> |
<math>~\biggl( \frac{\mu_e}{\mu_c} \biggr)^{-1} \theta^{-2}_i (2\pi)^{-1/2}\eta \, ;</math> |
<math>~\frac{\rho^*}{P^*}</math> |
<math>~=</math> |
<math>~ \biggl( \frac{\mu_e}{\mu_c} \biggr) \theta^{-1}_i \phi(\eta)^{-1} \, ; </math> |
<math>~\frac{M_r^*}{r^*}</math> |
<math>~=</math> |
<math>~ 2 \biggl( \frac{\mu_e}{\mu_c} \biggr)^{-1} \theta_i \eta \biggl(-\eta^2 \frac{d\phi}{d\eta} \biggr) \, . </math> |
So the relevant envelope LAWE becomes,
<math>~0</math> |
<math>~=</math> |
<math>~ \frac{d^2x}{dr*^2} + \biggl\{ 4 -\biggl(\frac{\rho^*}{P^*}\biggr)\frac{ M_r^*}{(r^*)}\biggr\}\frac{1}{r^*} \frac{dx}{dr*} + \biggl(\frac{\rho^*}{ P^* } \biggr)\biggl\{ \frac{2\pi \sigma_c^2}{3\gamma_\mathrm{g}} ~-~\frac{\alpha_\mathrm{g} M_r^*}{(r^*)^3}\biggr\} x \, , </math> |
See Also
- K. De et al. (12 October 2018, Science, Vol. 362, No. 6411, pp. 201 - 206), A Hot and Fast Ultra-stripped Supernova that likely formed a Compact Neutron Star Binary.
© 2014 - 2021 by Joel E. Tohline |