User:Tohline/Math/EQ Toroidal03
Jump to navigation
Jump to search
<math>~Q_\nu^\mu(z)</math> |
<math>~=</math> |
<math>~ e^{i \mu \pi} ~ (2\pi)^{-\frac{1}{2}} (z^2-1)^{\mu/2} ~\Gamma(\mu + \tfrac{1}{2})~\biggl\{ \int_0^\pi (z - \cos t)^{-\mu - \frac{1}{2}} \cos[(\nu + \tfrac{1}{2})t] ~dt -\cos(\nu\pi) \int_0^\infty (z + \cosh t)^{-\mu - \frac{1}{2}} e^{-(\nu + \frac{1}{2})t} ~dt \biggr\} </math> |
|
A. Erdélyi (1953): Volume I, §3.7, p. 156, eq. (10) |
Valid for: |
<math>~\mathrm{Re} ~\nu > -\tfrac{1}{2}</math> |
and |
<math>~\mathrm{Re} (\nu + \mu + 1) > 0 \, .</math> |