User:Tohline/SR/PoissonOrigin
Poisson Equation
| Tiled Menu | Tables of Content | Banner Video | Tohline Home Page | |
Drawn from Other Wiki Pages
It is clear, therefore, that Chandrasekhar uses the variable <math>~\vec{u}</math> instead of <math>~\vec{v}</math> to represent the inertial velocity field. More importantly, he adopts a different variable name and a different sign convention to represent the gravitational potential, specifically,
<math>~ - \Phi = \mathfrak{B} </math> |
<math>~=</math> |
<math>~ G \int\limits_V \frac{\rho(\vec{x}^{~'})}{|\vec{x} - \vec{x}^{~'}|} d^3x^' \, .</math> |
Hence, care must be taken to ensure that the signs on various mathematical terms are internally consistent when mapping derivations and resulting expressions from [EFE] into this H_Book.
… which expresses simply the conservation of the angular momentum of the system. The symmetric part of the tensor expression gives what is generally referred to as (see [EFE] for details) the,
Tensor Virial Equation
<math>~\frac{1}{2} \frac{d^2 I_{ij}}{dt^2}</math> |
<math>~=</math> |
<math>~2 \mathfrak{T}_{ij} + \mathfrak{W}_{ij} + \delta_{ij}\Pi \, ,</math> |
See Also
© 2014 - 2021 by Joel E. Tohline |