User:Tohline/SSC/Structure/Polytropes
Radial Oscillations of Polytropic Spheres
| Tiled Menu | Tables of Content | Banner Video | Tohline Home Page | |
Overview
The eigenvector associated with radial oscillations in isolated polytropes has been determined numerically and the results have been presented in a variety of key publications:
- P. LeDoux & Th. Walraven (1958, Handbuch der Physik, 51, 353) —
- M. Hurley, P. H. Roberts, & K. Wright (1966, ApJ, 143, 535) — The Oscillations of Gas Spheres
- J. P. Cox (1974, Reports on Progress in Physics, 37, 563) — Pulsating Stars
Tables
Quantitative Information Regarding Eigenvectors of Oscillating Polytropes <math>~(\Gamma_1 = 5/3)</math> |
||||
---|---|---|---|---|
<math>~n</math> |
<math>~\frac{\rho_c}{\bar\rho}</math> |
Excerpts from Table 1 of Hurley, Roberts, & Wright (1966) <math>~s^2 (n+1)/(4\pi G\rho_c)</math> |
Excerpts from Table 3 of <math>~\sigma_0^2 R^3/(GM)</math> |
<math>\frac{(n+1) *\mathrm{Cox74}}{3 *\mathrm{HRW66}} \cdot \frac{\bar\rho}{\rho_c}</math> |
<math>~0</math> |
<math>~1</math> |
<math>~1/3</math> |
<math>~1</math> |
<math>~1</math> |
<math>~1</math> |
<math>~3.30</math> |
<math>~0.38331</math> |
<math>~1.892</math> |
<math>~0.997</math> |
<math>~1.5</math> |
<math>~5.99</math> |
<math>~0.37640</math> |
<math>~2.712</math> |
<math>~1.002</math> |
<math>~2</math> |
<math>~11.4</math> |
<math>~0.35087</math> |
<math>~4.00</math> |
<math>~1.000</math> |
<math>~3</math> |
<math>~54.2</math> |
<math>~0.22774</math> |
<math>~9.261</math> |
<math>~1.000</math> |
<math>~3.5</math> |
<math>~153</math> |
<math>~0.12404</math> |
<math>~12.69</math> |
<math>~1.003</math> |
<math>~4.0</math> |
<math>~632</math> |
<math>~0.04056</math> |
<math>~15.38</math> |
<math>~1.000</math> |
Related Discussions
© 2014 - 2021 by Joel E. Tohline |