User:Tohline/PGE/Hybrid Scheme

From VistrailsWiki
< User:Tohline‎ | PGE
Revision as of 00:47, 26 February 2014 by Tohline (talk | contribs) (Begin page that discusses hybrid scheme)
Jump to navigation Jump to search

Hybrid Scheme

Whitworth's (1981) Isothermal Free-Energy Surface
|   Tiled Menu   |   Tables of Content   |  Banner Video   |  Tohline Home Page   |

Traditional Eulerian Representation (Review)

Here we review the traditional Eulerian representation of the Euler Equation, as has been discussed in detail earlier.

in terms of velocity:

The so-called "Eulerian form" of the Euler equation can be straightforwardly derived from the standard Lagrangian representation to obtain,

Eulerian Representation
of the Euler Equation,

<math>~\frac{\partial\vec{v}}{\partial t} + (\vec{v}\cdot \nabla) \vec{v}= - \frac{1}{\rho} \nabla P - \nabla \Phi</math>

in terms of momentum density:

Also, we can multiply this expression through by <math>~\rho</math> and combine it with the continuity equation to derive what is commonly referred to as the,

Conservative Form
of the Euler Equation,

<math>~\frac{\partial(\rho\vec{v})}{\partial t} + \nabla\cdot [(\rho\vec{v})\vec{v}]= - \nabla P - \rho \nabla \Phi</math>

The second term on the left-hand-side of this last expression represents the divergence of the "dyadic product" of the vector momentum density (<math>~\rho</math><math>~\vec{v}</math>) and the velocity vector <math>~\vec{v}</math> and is sometimes written as, <math>\nabla\cdot [(\rho \vec{v}) \otimes \vec{v}]</math>.

Component Forms

Let's split the vector Euler equation into its three scalar components; various examples are identified in Table 1.

Example #

Grid Basis

Grid Rotation

Momentum Basis

Momentum Frame

1

Cartesian

Nonrotating

Cartesian

Inertial

2

Cylindrical

Nonrotating

Cylindrical

Inertial


=CartNon & CartNon

Consider the familiar case of transport of

Related Discussions


Whitworth's (1981) Isothermal Free-Energy Surface

© 2014 - 2021 by Joel E. Tohline
|   H_Book Home   |   YouTube   |
Appendices: | Equations | Variables | References | Ramblings | Images | myphys.lsu | ADS |
Recommended citation:   Tohline, Joel E. (2021), The Structure, Stability, & Dynamics of Self-Gravitating Fluids, a (MediaWiki-based) Vistrails.org publication, https://www.vistrails.org/index.php/User:Tohline/citation