User:Tohline/SSC/Structure/BonnorEbert

From VistrailsWiki
< User:Tohline
Revision as of 20:57, 31 October 2012 by Tohline (talk | contribs) (Blend Bonnor-Ebert discussion in with earlier discussion of Emden's isothermal sphere)
Jump to navigation Jump to search
Whitworth's (1981) Isothermal Free-Energy Surface
|   Tiled Menu   |   Tables of Content   |  Banner Video   |  Tohline Home Page   |

Pressure-Bounded Isothermal Sphere (structure)

Governing Relation

The equilibrium structure of an isolated isothermal sphere, as derived by Emden (1907), has been discussed elsewhere. From this separate discussion we appreciate that the governing ODE is,

<math>\frac{1}{r^2} \frac{d}{dr}\biggl( r^2 \frac{d\ln\rho}{dr} \biggr) =- \frac{4\pi G}{c_s^2} \rho \, ,</math>

where,

<math>c_s^2 = \frac{\Re T}{\bar{\mu}} = \frac{k T}{m_u \bar{\mu}} \, ,</math>

is the square of the isothermal sound speed. In their studies of pressure-bounded isothermal spheres, Ebert (1955, ZA, 37, 217) and Bonnor (1956, MNRAS, 116, 351) both started with this governing ODE, but developed its solution in different ways. Here we present both developments while highlighting transformations between the two.

Derivation by Bonnor (edited) translation Derivation by Ebert (edited)
Bonnor (1956, MNRAS, 116, 351)
<math>G \Leftrightarrow \gamma</math>
Ebert (1955, ZA, 37, 217)
<math>\rho_c \Leftrightarrow \rho_0</math>
<math>\frac{kT}{m} \Leftarrow c_s^2 \Rightarrow \frac{\Re T_0}{\mu}</math>
<math>\beta^{1/2}\lambda^{-1/2} \Leftrightarrow l_0</math>
<math>e^{-\psi} \Leftrightarrow \eta</math>

Both of these dimensionless governing ODEs — Bonnor's Eq. (2.8) and Ebert's Eq. (17) — are identical to the one derived by Emden (see the presentation elsewhere), namely,

<math> \frac{d^2v_1}{d\mathfrak{r}_1^2} +\frac{2}{\mathfrak{r}_1} \frac{dv_1}{dr} + e^{v_1} = 0 \, . </math>

The translation from Emden-to-Bonnor-to-Ebert is straightforward:

<math> \mathfrak{r}_1 = \xi|_\mathrm{Bonner} = \xi|_\mathrm{Ebert}~~~~\mathrm{and}~~~~e^{v_1} = e^{-\psi} = \eta \, . </math>

Related Wikipedia Discussions


Whitworth's (1981) Isothermal Free-Energy Surface

© 2014 - 2021 by Joel E. Tohline
|   H_Book Home   |   YouTube   |
Appendices: | Equations | Variables | References | Ramblings | Images | myphys.lsu | ADS |
Recommended citation:   Tohline, Joel E. (2021), The Structure, Stability, & Dynamics of Self-Gravitating Fluids, a (MediaWiki-based) Vistrails.org publication, https://www.vistrails.org/index.php/User:Tohline/citation