User:Tohline/ThreeDimensionalConfigurations/Challenges
Challenges Constructing Ellipsoidal-Like Configurations
First, let's review the three different approaches that we have described for constructing Riemann S-type ellipsoids. Then let's see how these relate to the technique that has been used to construct infinitesimally thin, nonaxisymmetric disks.
| Tiled Menu | Tables of Content | Banner Video | Tohline Home Page | |
Riemann S-type Ellipsoids
Usually, the density, <math>~\rho</math>, and the pair of axis ratios, <math>~b/a</math> and <math>~c/a</math>, are specified. Then, the Poisson equation is solved to obtain <math>~\Phi_\mathrm{grav}</math> in terms of <math>~A_1</math>, <math>~A_2</math>, and <math>~A_3</math>. The aim, then, is to determine the value of the central enthalpy, <math>~H_0</math> — alternatively, the thermal energy density, <math>~\Pi</math> — and the two parameters, <math>~\Omega_f</math> and <math>~\lambda</math>, that determine the magnitude of the velocity flow-field. Keep in mind that, as viewed from a frame of reference that is spinning with the ellipsoid (at angular frequency, <math>~\Omega_f</math>), the adopted (rotating-frame) velocity field is,
<math>~\bold{u}</math> |
<math>~=</math> |
<math>~\lambda \biggl[ \boldsymbol{\hat\imath} \biggl( \frac{a}{b}\biggr) y - \boldsymbol{\hat\jmath} \biggl( \frac{b}{a} \biggr) x \biggr] \, .</math> |
Hence, the inertial-frame velocity is given by the expression,
<math>~\bold{v}</math> |
<math>~=</math> |
<math>~\bold{u} + \bold{\hat{e}}_\varphi \Omega_f \varpi \, .</math> |
While we will fundamentally rely on the <math>~(\Omega_f, \lambda)</math> parameter pair to define the velocity flow-field, in discussions of Riemann S-type ellipsoids it is customary to also refer to the following two additional parameters: The (rotating-frame) vorticity,
<math>~\boldsymbol{\zeta} \equiv \boldsymbol{\nabla \times}\bold{u}</math> |
<math>~=</math> |
<math>~ \boldsymbol{\hat\imath} \biggl[ \frac{\partial u_z}{\partial y} - \frac{\partial u_y}{\partial z} \biggr] + \boldsymbol{\hat\jmath} \biggl[ \frac{\partial u_x}{\partial z} - \frac{\partial u_z}{\partial x} \biggr] + \bold{\hat{k}} \biggl[ \frac{\partial u_y}{\partial x} - \frac{\partial u_x}{\partial y} \biggr] </math> |
|
<math>~=</math> |
<math>~\bold{\hat{k}} \biggl[ - \lambda \biggl(\frac{b}{a} + \frac{a}{b}\biggr) \biggr] \, ;</math> |
and the dimensionless frequency ratio,
<math>~f</math> |
<math>~\equiv</math> |
<math>~\frac{ \zeta}{\Omega_f} \, .</math> |
2nd-Order TVE Expressions
As we have discussed in detail in an accompanying chapter, the three diagonal elements of the <math>~(3 \times 3)</math> 2nd-order tensor virial equation are sufficient to determine the equilibrium values of <math>~\Pi</math>, <math>~\Omega_3</math>, and <math>~\zeta_3</math>.
Indices | 2nd-Order TVE Expressions that are Relevant to Riemann S-Type Ellipsoids | ||||
<math>~i</math> | <math>~j</math> | ||||
<math>~1</math> | <math>~1</math> |
|
|||
<math>~2</math> | <math>~2</math> |
|
|||
<math>~3</math> | <math>~3</math> |
|
The <math>~(i, j) = (3, 3)</math> element gives <math>~\Pi</math> directly in terms of known parameters. The <math>~(1, 1)</math> and <math>~(2, 2)</math> elements can then be combined in a couple of different ways to obtain a coupled set of expressions that define <math>~\Omega_3</math> and <math>~f \equiv \zeta_3/\Omega_3</math>.
and,
|
Compressible Structures
See Also
© 2014 - 2021 by Joel E. Tohline |