User:Tohline/Appendix/CGH/ParallelAperturesConsolidate

From VistrailsWiki
Jump to navigation Jump to search

CGH: Consolidate Expressions Regarding Parallel Apertures

One-dimensional Apertures

From our accompanying discussion of the Utility of FFT Techniques, we start with the most general expression for the amplitude at one point on an image screen, namely,

<math>~A(y_1)</math>

<math>~=</math>

<math>~\sum_j a_j e^{i(2\pi D_j/\lambda + \phi_j)} \, , </math>

and, assuming that <math>~|Y_j/L| \ll 1</math> for all <math>~j</math>, deduce that,

<math>~A(y_1)</math>

<math>~\approx</math>

<math>~\sum_j a_j e^{i[ 2\pi L/\lambda + \phi_j]}\biggl[ \cos\biggl(\frac{2\pi y_1 Y_j}{\lambda L} \biggr) - i \sin\biggl(\frac{2\pi y_1 Y_j}{\lambda L} \biggr) \biggr] \, , </math>

where,

<math>~L</math>

<math>~\equiv</math>

<math>~ Z \biggl[1 + \frac{y_1^2}{Z^2} \biggr]^{1 / 2} \, . </math>

Note that <math>~L</math> is formally a function of <math>~y_1</math>, but in most of what follows it will be reasonable to assume, <math>~L \approx Z</math>. Notice, as well, that this last approximate expression for the (complex) amplitude at the image screen may be rewritten in the form that will be referred to as our,

Focal-Point Expression

<math>~A(y_1)</math>

<math>~\approx</math>

<math>~ e^{i 2\pi L/\lambda } \sum_j a_j e^{i \phi_j} \cdot e^{-i \Theta_j } \, , </math>

where,

<math>~\Theta_j</math>

<math>~\equiv</math>

<math>~\biggl(\frac{2\pi y_1 Y_j}{\lambda L} \biggr) \, .</math>

Case 1

In a related accompanying derivation titled, Analytic Result, we made the substitution,

<math>~a_j </math>

<math>~\rightarrow</math>

<math>~a_0(Y) dY = a_0(\Theta) \biggl[ \frac{w}{2\beta_1} \biggr] d\Theta \, ,</math>

where,

<math>~\frac{1}{\beta_1}</math>

<math>~\equiv</math>

<math>~\frac{\lambda L}{\pi y_1w} \, ,</math>

and changed the summation to an integration, obtaining,

<math>~A(y_1)</math>

<math>~\approx</math>

<math>~ e^{i 2\pi L/\lambda }\biggl[ \frac{w}{2\beta_1} \biggr] \int a_0(\Theta) e^{i\phi(\Theta)} \cdot e^{-i \Theta } d\Theta \, . </math>

If we assume that both <math>~a_0</math> and <math>~\phi</math> are independent of position along the aperture, and that the aperture — and, hence the integration — extends from <math>~Y_2 = -w/2</math> to <math>~Y_1 = +w/2</math>, we have shown that this last expression can be evaluated analytically to give,

<math>~A(y_1)</math>

<math>~\approx</math>

<math>~ e^{i [2\pi L/\lambda + \phi] }\biggl[ \frac{a_0 w}{2\beta_1} \biggr] \int_{\Theta_2}^{\Theta_1} e^{-i \Theta } d\Theta </math>

 

<math>~=</math>

<math>~ e^{i [2\pi L/\lambda + \phi] } \cdot a_0 w ~\mathrm{sinc}(\beta_1) \, . </math>

We need to explicitly demonstrate that an evaluation of our Focal-Point Expression with <math>~a_j = 1</math>, gives this last sinc-function expression, to within a multiplicative factor of, something like, <math>~j_\mathrm{max}</math>.

Case 2

In our accompanying discussion of the Fourier Series, we have shown that a square wave can be constructed from the expression,

<math>~f(x)</math>

<math>~=</math>

<math>~ \frac{c}{L} + \sum_{n=1}^{\infty} \biggl( \frac{2}{n\pi} \biggr) \sin \biggl( \frac{n\pi c}{L} \biggr) \cos \biggl(\frac{n\pi x}{L}\biggr) </math>

 

<math>~=</math>

<math>~ \frac{2c}{L}\biggl\{\frac{1}{2} + \sum_{n=1}^{\infty} \mathrm{sinc} \biggl( \frac{n\pi c}{L} \biggr) \cos \biggl(\frac{n\pi x}{L}\biggr) \biggr\} \, . </math>

Can we make this look like our above, Focal-Point Expression?

Let's start by setting

<math>~Y_j</math>

<math>~=</math>

<math>~\frac{j\cdot w}{(j_\mathrm{max}-1)} - \frac{w}{2} \, ,</math>

for <math>~0 \le j \le (j_\mathrm{max}-1)</math>, in which case,

<math>~\Theta_j</math>

<math>~\equiv</math>

<math>~ \frac{2\pi y_1}{\lambda L} \biggl[ \frac{j\cdot w}{(j_\mathrm{max}-1)} - \frac{w}{2} \biggr] = \frac{2\pi y_1}{\lambda L} \biggl[ \frac{j\cdot w}{(j_\mathrm{max}-1)} \biggr] - \frac{2\pi y_1}{\lambda L} \biggl[ \frac{w}{2} \biggr] </math>

<math>~=</math>

<math>~ j \biggl[ \frac{2\pi y_1 w}{(j_\mathrm{max}-1) \lambda L} \biggr] - \frac{\pi y_1 w }{\lambda L} = \biggl( \frac{2j}{j_\mathrm{max} - 1} - 1 \biggr) \frac{\pi y_1 w }{\lambda L} \, ,</math>

<math>~=</math>

<math>~ j \cdot \Delta\Theta - \frac{(j_\mathrm{max} -1)}{2} \Delta\Theta \, ,</math>

where,

<math>~\Delta\Theta \equiv \frac{\pi y_1}{\mathfrak{L}} \, ,</math>     and     <math>~\mathfrak{L} \equiv \biggl[ \frac{(j_\mathrm{max}-1) \lambda L}{2w} \biggr] \, .</math>

This means that <math>~\Theta_{i} = - \Theta_{( j_\mathrm{max} - 1 - i )}</math>.

The key expression under the summation therefore becomes,

<math>~a_j e^{i \phi_j} \cdot e^{-i \Theta_j } </math>

<math>~=</math>

<math>~~a_j e^{i \phi_j} \cdot \biggl[ \cos \biggl( \frac{j\pi y_1}{\mathfrak{L}}- \Theta_0 \biggr) - i \sin \biggl( \frac{j\pi y_1}{\mathfrak{L}}- \Theta_0 \biggr) \biggr] \, ,</math>

where,

<math>~\Theta_0 \equiv \frac{(j_\mathrm{max} - 1)}{2} \cdot \pi y_1 \biggl[ \frac{2w}{(j_\mathrm{max}-1) \lambda L} \biggr] = \frac{\pi y_1 w}{\lambda L} \, .</math>

Now, what is the argument of the sinc function? By default, it needs to be something along the lines of,

<math>~\frac{j \pi c}{\mathfrak{L}}</math>

<math>~=</math>

<math>~j \pi c \biggl[ \frac{2w}{(j_\mathrm{max}-1) \lambda L} \biggr] \, .</math>

Then, as <math>~j</math> varies from <math>~0</math> to <math>~(j_\mathrm{max} - 1)</math>, the argument goes from <math>~0</math> to <math>~[2\pi w c/(\lambda L)]</math>. In an effort to make the function exhibit reflection symmetry as we move from one side of the aperture to the next, let's subtract half of this upper limit; that is, let's modify the argument of the sinc function to read,

<math>~\frac{j \pi c}{\mathfrak{L}} - \frac{\pi w c}{\lambda L}</math>

<math>~=</math>

<math>~ j \pi c \biggl[ \frac{2w}{(j_\mathrm{max}-1) \lambda L} \biggr] - \frac{\pi w c}{\lambda L} = \biggl[ \frac{2j}{j_\mathrm{max}-1} - 1\biggr]\biggl[ \frac{\pi w c}{\lambda L} \biggr] \, . </math>

This means that in our above, Focal-Point Expression we want to set,

<math>~a_j</math>

<math>~=</math>

<math>~ \mathrm{sinc} \biggl[ \biggl( \frac{2j}{j_\mathrm{max}-1} - 1 \biggr) \frac{\pi w c}{\lambda L} \biggr] \, . </math>

This therefore gives the following,

Focal-Point Expression for a Square Wave

<math>~A(y_1)</math>

<math>~\approx</math>

<math>~ e^{i 2\pi L/\lambda } \sum_j e^{i \phi_j} \cdot~ \mathrm{sinc} \biggl[ \biggl( \frac{2j}{j_\mathrm{max}-1} - 1 \biggr) \frac{\pi w c}{\lambda L} \biggr] \biggl\{ \cos \biggl[ \biggl( \frac{2j}{j_\mathrm{max} - 1} - 1 \biggr) \frac{\pi y_1 w }{\lambda L} \biggr] - i \sin \biggl[ \biggl( \frac{2j}{j_\mathrm{max} - 1} - 1 \biggr) \frac{\pi y_1 w }{\lambda L} \biggr] \biggr\} \, . </math>

This exhibits a very desirable feature: Both the sinc function and the sine function — and, hence, also their product — have reflection symmetry about the summation index, <math>~j = (j_\mathrm{max}-1)/2</math>. As a result, if the overall phase factor, <math>~e^{i \phi_j}</math>, behaves in an appropriately simple way — for example, if it is zero everywhere — then under the summation the sine term will sum to zero and leave only the desired — and real — product, <math>~\mathrm{sinc} \times \cos</math>. Try this out in Excel to see if it works!

See Also


Whitworth's (1981) Isothermal Free-Energy Surface

© 2014 - 2021 by Joel E. Tohline
|   H_Book Home   |   YouTube   |
Appendices: | Equations | Variables | References | Ramblings | Images | myphys.lsu | ADS |
Recommended citation:   Tohline, Joel E. (2021), The Structure, Stability, & Dynamics of Self-Gravitating Fluids, a (MediaWiki-based) Vistrails.org publication, https://www.vistrails.org/index.php/User:Tohline/citation