User:Tohline/SSC/Structure/Polytropes/VirialSummary
Virial Equilibrium of Pressure-Truncated Polytropes
Here we will draw heavily from an accompanying Free Energy Synopsis.
| Tiled Menu | Tables of Content | Banner Video | Tohline Home Page | |
In the context of spherically symmetric, pressure-truncated polytropic configurations, the relevant free-energy expression is,
<math>~\mathfrak{G}</math> |
<math>~=</math> |
<math>~W_\mathrm{grav} + U_\mathrm{int} + P_e V \, .</math> |
When rewritten in a suitably dimensionless form — see two useful alternatives, below — this expression becomes,
<math>~\mathfrak{G}^*</math> |
<math>~=</math> |
<math>~- a x^{-1} + bx^{-3/n} + c x^3 \, ,</math> |
where <math>~x</math> is the configuration's dimensionless radius and <math>~a</math>, <math>~b</math>, and <math>~c</math> are constants. We therefore have,
<math>~\frac{d\mathfrak{G}^*}{dx}</math> |
<math>~=</math> |
<math>~\frac{1}{x^2} \biggl[ a - \biggl( \frac{3b}{n} \biggr) x^{(n-3)/n} + 3c x^4 \biggr] \, ,</math> |
and,
<math>~\frac{d^2\mathfrak{G}^*}{dx^2}</math> |
<math>~=</math> |
<math>~\frac{1}{x^3} \biggl[ \biggl( \frac{3b}{n} \biggr)\biggl(\frac{n+3}{n}\biggr) x^{(n-3)/n} + 6c x^4 - 2a \biggr] \, .</math> |
See Also
© 2014 - 2021 by Joel E. Tohline |