User:Tohline/Appendix/Ramblings/RadiationHydro
Radiation-Hydrodynamics
| Tiled Menu | Tables of Content | Banner Video | Tohline Home Page | |
Principal Governing Equations
Hayes et al. (2006) — But Ignoring the Effects of Magnetic Fields
First, referencing §2 of J. C. Hayes et al. (2006, ApJS, 165, 188 - 228) — alternatively see §2.1 of D. C. Marcello & J. E. Tohline (2012, ApJS, 199, id. 35, 29 pp) — we see that the set of principal governing equations that is typically used in the astrophysics community to include the effects of radiation on self-gravitating fluid flows includes the,
the,
and — ignoring magnetic fields — a modified version of the,
Lagrangian Representation
of the Euler Equation,
<math>~\frac{d\vec{v}}{dt}</math> |
<math>~=</math> |
<math>~ - \frac{1}{\rho}\nabla P - \nabla \Phi + \frac{1}{\rho}\biggl(\frac{\chi}{c}\biggr) \vec{F} \, , </math> |
plus the following pair of additional energy-conservation-based dynamical equations:
<math>~\rho \frac{d}{dt} \biggl( \frac{e}{\rho}\biggr) + P\nabla \cdot \vec{v} </math> |
<math>~=</math> |
<math>~ c\kappa_E E_\mathrm{rad} - 4\pi \kappa_p B_p \, , </math> |
<math>~\rho \frac{d}{dt} \biggl( \frac{E_\mathrm{rad}}{\rho}\biggr)</math> |
<math>~=</math> |
<math>~ - \biggl[ \nabla \cdot \vec{F} + \bold{P}_\mathrm{st}:\nabla{\vec{v}} + c\kappa_E E_\mathrm{rad} - 4\pi \kappa_p B_p \biggr] \, , </math> |
where, in this last expression, <math>~\bold{P}_\mathrm{st}</math> is the radiation stress tensor.
Various Manipulations
By combining the left-hand side of this last expression with the continuity equation then replacing the Lagrangian (that is, the material) time derivative by its Eulerian counterpart, the left-hand side can be rewritten as,
<math>~\rho \frac{d}{dt} \biggl( \frac{E_\mathrm{rad}}{\rho}\biggr)</math> |
<math>~=</math> |
<math>~ \frac{dE_\mathrm{rad}}{dt} - \frac{E_\mathrm{rad}}{\rho}~\frac{d\rho}{dt} </math> |
|
<math>~=</math> |
<math>~ \frac{dE_\mathrm{rad}}{dt} + E_\mathrm{rad}\nabla\cdot \vec{v} </math> |
|
<math>~=</math> |
<math>~ \frac{\partial E_\mathrm{rad}}{\partial t} + \vec{v}\cdot \nabla E_\mathrm{rad}+ E_\mathrm{rad}\nabla\cdot \vec{v} </math> |
|
<math>~=</math> |
<math>~ \frac{\partial E_\mathrm{rad}}{\partial t} + \nabla\cdot (E_\mathrm{rad} \vec{v}) \, , </math> |
which provides an alternate form of the expression, as found for example in equation (4) of Marcello & J. E. Tohline (2012).
By combining the continuity equation with the
First Law of Thermodynamics
<math>T \frac{ds}{dt} = \frac{d\epsilon}{dt} + P \frac{d}{dt} \biggl(\frac{1}{\rho}\biggr)</math> |
we can write,
<math>~\rho T\frac{ds}{dt}</math> |
<math>~=</math> |
<math>~ \rho \frac{d\epsilon}{dt} - \frac{P}{\rho} \frac{d\rho}{dt} </math> |
|
<math>~=</math> |
<math>~ \rho \frac{d\epsilon}{dt} + P\nabla\cdot \vec{v} \, . </math> |
Optically Thick Regime
In the optically thick regime, the following conditions hold:
<math>~c\kappa_E E_\mathrm{rad}</math> |
<math>~\rightarrow</math> |
<math>~4\pi \kappa_p B_p \, ,</math> |
<math>~E_\mathrm{rad}</math> |
<math>~\rightarrow</math> |
<math>~aT^4 \, ,</math> |
<math>~\biggl(\frac{\chi}{c}\biggr) \vec{F}</math> |
<math>~\rightarrow</math> |
<math>~- \nabla \biggl(\frac{aT^4}{3} \biggr) \, ,</math> |
<math>~ \vec{\bold{P}}:\nabla{\vec{v}}</math> |
<math>~\rightarrow</math> |
<math>~\frac{E_\mathrm{rad}}{3} \nabla \cdot \vec{v} \, .</math> |
Related Discussions
- Euler equation viewed from a rotating frame of reference.
- An earlier draft of this "Euler equation" presentation.
© 2014 - 2021 by Joel E. Tohline |