User:Tohline/Math/EQ Toroidal04
Jump to navigation
Jump to search
<math>~(\nu - \mu + 1)P^\mu_{\vu + 1}</math> |
<math>~=</math> |
<math>~ e^{i \mu \pi} ~ (2\pi)^{-\frac{1}{2}} (z^2-1)^{\mu/2} ~\Gamma(\mu + \tfrac{1}{2})~\biggl\{ \int_0^\pi (z - \cos t)^{-\mu - \frac{1}{2}} \cos[(\nu + \tfrac{1}{2})t] ~dt -\cos(\nu\pi) \int_0^\infty (z + \cosh t)^{-\mu - \frac{1}{2}} e^{-(\nu + \frac{1}{2})t} ~dt \biggr\} </math> |
|
Abramowitz & Stegun (1995), p. 334, eq. (8.5.3) |
NOTE: Both <math>~P_\nu^\mu</math> and <math>~Q_\nu^\mu</math> satisfy this same recurrence relation. |