User:Tohline/Appendix/Ramblings/SphericalWaveEquation
Playing With Spherical Wave Equation
| Tiled Menu | Tables of Content | Banner Video | Tohline Home Page | |
The traditional presentation of the (spherically symmetric) adiabatic wave equation focuses on fractional radial displacements, <math>~x \equiv \delta r/r_0</math>, of spherical mass shells. After studying in depth various stability analyses of Papaloizou-Pringle tori, I have begun to wonder whether the wave equation for spherical polytropes might look simpler if we focus, instead, on fluctuations in the fluid entropy.
Assembling the Key Relations
In the traditional approach, the following three linearized equations describe the physical relationship between the three dimensionless perturbation amplitudes <math>~p(r_0) \equiv P_1/P_0</math>, <math>~d(r_0) \equiv \rho_1/\rho_0</math> and <math>~x(r_0) \equiv r_1/r_0</math>, for various characteristic eigenfrequencies, <math>~\omega</math>:
Linearized Linearized Linearized |
First Effort
Let's switch from the perturbation variable, <math>~p</math>, to an enthalpy-related variable,
<math>~W</math> |
<math>~\equiv</math> |
<math>~\frac{P_1}{\rho_0} = \biggl(\frac{P_0}{\rho_0}\biggr) p \, .</math> |
The second expression then becomes,
<math>~x(4g_0 + \omega^2 r_0)</math> |
<math>~=</math> |
<math>~\frac{P_0}{\rho_0} \frac{d}{dr_0}\biggl(\frac{W\rho_0}{P_0}\biggr) - \biggl(\frac{g_0 \rho_0}{P_0}\biggr)W</math> |
|
<math>~=</math> |
<math>~\frac{dW}{dr_0} + \frac{W}{\rho_0} \frac{d\rho_0}{dr_0} - \frac{W }{P_0} \frac{dP_0}{dr_0} - \biggl(\frac{g_0 \rho_0}{P_0}\biggr)W</math> |
|
<math>~=</math> |
<math>~\frac{dW}{dr_0}+ \frac{W}{\rho_0} \frac{d\rho_0}{dr_0} \, . </math> |
Taking the derivative of this expression with respect to <math>~r_0</math> gives,
<math>~\frac{dx}{dr_0}</math> |
<math>~=</math> |
<math>~\frac{d}{dr_0}\biggl\{ (4g_0 + \omega^2 r_0)^{-1}\biggl[\frac{dW}{dr_0} + \frac{W}{\rho_0} \frac{d\rho_0}{dr_0} \biggr] \biggr\} </math> |
|
<math>~=</math> |
<math>~ (4g_0 + \omega^2 r_0)^{-1}\frac{d}{dr_0} \biggl[\frac{dW}{dr_0} + \frac{W}{\rho_0} \frac{d\rho_0}{dr_0} \biggr] +\biggl[\frac{dW}{dr_0} + \frac{W}{\rho_0} \frac{d\rho_0}{dr_0} \biggr]\frac{d}{dr_0} (4g_0 + \omega^2 r_0)^{-1} </math> |
|
<math>~=</math> |
<math>~ (4g_0 + \omega^2 r_0)^{-1} \biggl\{ \frac{d^2W}{dr^2_0} + \frac{d}{dr_0}\biggl[\frac{W}{\rho_0} \frac{d\rho_0}{dr_0} \biggr] \biggr\} -(4g_0 + \omega^2 r_0)^{-2}\biggl[\frac{dW}{dr_0} + \frac{W}{\rho_0} \frac{d\rho_0}{dr_0} \biggr] \biggl\{ 4\frac{dg_0}{dr_0} + \omega^2 \biggr\} </math> |
<math>~\Rightarrow~~~~ (4g_0 + \omega^2 r_0)^{2} \biggl[ \frac{dx}{dr_0} \biggr] </math> |
<math>~=</math> |
<math>~ (4g_0 + \omega^2 r_0)\biggl\{ \frac{d^2W}{dr^2_0} + \frac{d}{dr_0}\biggl[\frac{W}{\rho_0} \frac{d\rho_0}{dr_0} \biggr] \biggr\} -\biggl[\frac{dW}{dr_0} + \frac{W}{\rho_0} \frac{d\rho_0}{dr_0} \biggr] \biggl\{ 4\frac{dg_0}{dr_0} + \omega^2 \biggr\} \, . </math> |
Hence, the linearized equation of continuity becomes,
<math>~- (4g_0 + \omega^2 r_0)^{2}\biggl(\frac{W\rho_0}{\gamma_g r_0P_0}\biggr) </math> |
<math>~=</math> |
<math>~(4g_0 + \omega^2 r_0)^{2} \biggl[ \frac{dx}{dr_0} \biggr] +\frac{3 (4g_0 + \omega^2 r_0)}{r_0} \biggl[ (4g_0 + \omega^2 r_0)x \biggr] </math> |
|
<math>~=</math> |
<math>~ (4g_0 + \omega^2 r_0)\biggl\{ \frac{d^2W}{dr^2_0} + \frac{d}{dr_0}\biggl[\frac{W}{\rho_0} \frac{d\rho_0}{dr_0} \biggr] \biggr\} -\biggl[\frac{dW}{dr_0} + \frac{W}{\rho_0} \frac{d\rho_0}{dr_0} \biggr] \biggl\{ 4\frac{dg_0}{dr_0} + \omega^2 \biggr\} </math> |
|
|
<math>~ +\frac{3 (4g_0 + \omega^2 r_0)}{r_0} \biggl[ \frac{dW}{dr_0}+ \frac{W}{\rho_0} \frac{d\rho_0}{dr_0} \biggr] </math> |
Second Effort
Let's switch from the perturbation variable, <math>~p</math>, to an enthalpy-related variable,
<math>~W</math> |
<math>~\equiv</math> |
<math>~\frac{P_1}{\rho_0 {\bar\sigma}^2} = \biggl(\frac{P_0}{\rho_0 {\bar\sigma}^2}\biggr) p \, ,</math> |
where,
<math>~{\bar\sigma}^2 \equiv \frac{4g_0}{r_0} + \omega^2 \, .</math>
The second expression then becomes,
<math>~xr_0{\bar\sigma}^2</math> |
<math>~=</math> |
<math>~\frac{P_0}{\rho_0} \frac{d}{dr_0}\biggl(\frac{W\rho_0 {\bar\sigma}^2}{P_0}\biggr) - \biggl(\frac{g_0 \rho_0 {\bar\sigma}^2}{P_0}\biggr)W</math> |
|
<math>~=</math> |
<math>~ {\bar\sigma}^2 \cdot \frac{dW}{dr_0} + W \biggl[ \frac{P_0}{\rho_0} \frac{d}{dr_0}\biggl(\frac{\rho_0 {\bar\sigma}^2}{P_0}\biggr) - \biggl(\frac{g_0 \rho_0 {\bar\sigma}^2}{P_0}\biggr)\biggr] </math> |
<math>~\Rightarrow ~~~~ xr_0</math> |
<math>~=</math> |
<math>~ \frac{dW}{dr_0} + \frac{W}{\rho_0{\bar\sigma}^2} \biggl[ P_0 \frac{d}{dr_0}\biggl(\frac{\rho_0 {\bar\sigma}^2}{P_0}\biggr) + \biggl(\frac{\rho_0 {\bar\sigma}^2}{P_0}\biggr)\frac{dP_0}{dr_0} \biggr] </math> |
|
<math>~=</math> |
<math>~ \frac{dW}{dr_0} + W \biggl[ \frac{d \ln(\rho_0 {\bar\sigma}^2)}{dr_0} \biggr] \, . </math> |
Taking the derivative of this expression with respect to <math>~r_0</math> gives,
<math>~\frac{dx}{dr_0}</math> |
<math>~=</math> |
<math>~ \frac{d}{dr_0}\biggl\{\frac{1}{r_0}\biggl[ \frac{dW}{dr_0} + W \cdot \frac{d \ln(\rho_0 {\bar\sigma}^2)}{dr_0} \biggr] \biggr\} </math> |
<math>~\Rightarrow~~~~r_0 \frac{dx}{dr_0}</math> |
<math>~=</math> |
<math>~ \frac{d}{dr_0}\biggl[ \frac{dW}{dr_0} + W \cdot \frac{d \ln(\rho_0 {\bar\sigma}^2)}{dr_0} \biggr] - \frac{1}{r_0}\biggl[ \frac{dW}{dr_0} + W \cdot \frac{d \ln(\rho_0 {\bar\sigma}^2)}{dr_0} \biggr] </math> |
|
<math>~=</math> |
<math>~ \frac{d^2W}{dr_0^2} + \frac{dW}{dr_0} \biggl[ \frac{d \ln(\rho_0 {\bar\sigma}^2)}{dr_0} -\frac{1}{r_0}\biggr] + W \biggl\{ \frac{d^2 \ln(\rho_0 {\bar\sigma}^2)}{dr_0^2} - \frac{1}{r_0}\biggl[ \frac{d \ln(\rho_0 {\bar\sigma}^2)}{dr_0} \biggr]\biggr\} \, . </math> |
See Also
© 2014 - 2021 by Joel E. Tohline |