Difference between revisions of "User:Tohline/SSC/Structure/BiPolytropes/Analytic1.5 3"

From VistrailsWiki
Jump to navigation Jump to search
Line 8: Line 8:
In deriving the properties of this model, we will follow the [[User:Tohline/SSC/Structure/BiPolytropes#Solution_Steps|general solution steps for constructing a bipolytrope]] that are outlined in a separate chapter of this H_Book.  That group of general solution steps was drawn largely from chapter IV, &sect;28 of Chandrasekhar's book titled, "An Introduction to the Study of Stellar Structure" [[User:Tohline/Appendix/References#C67|[<b><font color="red">C67</font></b>]]].  At the end of that chapter (specifically, p. 182), Chandrasekhar acknowledges that Milne's "method is largely used in &sect; 28."  It seems fitting, therefore, that we highlight the features of the ''specific'' bipolytropic configuration that [http://adsabs.harvard.edu/abs/1930MNRAS..91....4M E. A. Milne (1930)] chose to build.
In deriving the properties of this model, we will follow the [[User:Tohline/SSC/Structure/BiPolytropes#Solution_Steps|general solution steps for constructing a bipolytrope]] that are outlined in a separate chapter of this H_Book.  That group of general solution steps was drawn largely from chapter IV, &sect;28 of Chandrasekhar's book titled, "An Introduction to the Study of Stellar Structure" [[User:Tohline/Appendix/References#C67|[<b><font color="red">C67</font></b>]]].  At the end of that chapter (specifically, p. 182), Chandrasekhar acknowledges that Milne's "method is largely used in &sect; 28."  It seems fitting, therefore, that we highlight the features of the ''specific'' bipolytropic configuration that [http://adsabs.harvard.edu/abs/1930MNRAS..91....4M E. A. Milne (1930)] chose to build.


==Our Derivation==
{{LSU_WorkInProgress}}
===Steps 2 &amp; 3===
 


Throughout the core, the properties of this bipolytrope can be expressed in terms of the Lane-Emden function, <math>~\theta(\xi)</math>, which derives from a solution of the 2<sup>nd</sup>-order ODE,
==Milne's (1930) Choice of Equations of State==
<div align="center">
<math>
\frac{1}{\xi^2} \frac{d}{d\xi} \biggl[ \xi^2 \frac{d\theta}{d\xi}\biggr] = - \theta^{3/2} \, ,
</math>
</div>
subject to the boundary conditions,
<div align="center">
<math>~\theta = 1</math> &nbsp; &nbsp; &nbsp; and &nbsp; &nbsp; &nbsp; <math>~\frac{d\theta}{d\xi} = 0</math>
&nbsp; &nbsp; &nbsp; at &nbsp; &nbsp; &nbsp; <math>~\xi = 0</math>.
</div>


The first zero of the function <math>~\theta(\xi)</math> and, hence, the surface of the corresponding isolated <math>~n=\tfrac{3}{2}</math> polytrope is located at <math>~\xi_s = 3.65375</math> (see Table 4 in chapter IV on p. 96 of [[User:Tohline/Appendix/References#C67|[<b><font color="red">C67</font></b>]]]).  Hence, the interface between the core and the envelope can be positioned anywhere within the range, <math>~0 < \xi_i < \xi_s = 3.65375</math>.
As has been detailed in our [[User:Tohline/SR#Equation_of_State|introductory discussion of analytically expressible equations of state]] and as is summarized in the following table, often the total gas pressure can be expressed as the sum of three separate components:  a component of ideal gas pressure, a component of radiation pressure, and a component due to a degenerate electron gas.


===Step 4:  Throughout the core <math>~(0 \le \xi \le \xi_i)</math>===
<table width="95%" align="center" border=1 cellpadding=5>
<div align="center">
<tr>
<table border="0" cellpadding="3">
<td align="center" width="25%"><font color="darkblue">Ideal Gas</font></td>
<td align="center"><font color="darkblue">Degenerate Electron Gas</font></td>
<td align="center" width="25%"><font color="darkblue">Radiation</font></td>
</tr>
<tr>
<tr>
  <td align="center" colspan="3">
<td align="center">
Specify: <math>~K_c</math> and <math>~\rho_0 ~\Rightarrow</math>
{{User:Tohline/Math/EQ_EOSideal0A}}
  </td>
</td>
  <td colspan="2">
<td align="center">
&nbsp;
{{User:Tohline/Math/EQ_ZTFG01}}
  </td>
</td>
<td align="center">
{{User:Tohline/Math/EQ_EOSradiation01}}
</td>
</tr>
</tr>
</table>
===Envelope===
[http://adsabs.harvard.edu/abs/1930MNRAS..91....4M Milne (1930)] considered that the effects of electron degeneracy pressure could be ignored in the envelope of his composite polytrope and, accordingly, employed an expression for the total pressure of the form,
<div align="center">
<table border="0" cellpadding="5" align="center">
<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~\rho</math>
<math>~P</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 44: Line 49:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~\rho_0 \theta^{n_c}</math>
<math>~P_\mathrm{gas} + P_\mathrm{rad} \, .</math>
  </td>
</tr>
</table>
</div>
 
Milne also introduced the parameter, <math>~\beta</math>, to define the ratio of gas pressure to total pressure in the envelope, that is,
<div align="center">
<math>\beta \equiv \frac{P_\mathrm{gas}}{P} \biggr|_\mathrm{env} \, ,</math>
</div>
in which case, also,
<div align="center">
<math>\frac{P_\mathrm{rad}}{P} \biggr|_\mathrm{env} = 1-\beta </math>
&nbsp; &nbsp; &nbsp; &nbsp; and &nbsp; &nbsp; &nbsp; &nbsp;
<math>\frac{P_\mathrm{gas}}{P_\mathrm{rad}} \biggr|_\mathrm{env} = \frac{\beta}{1-\beta} \, , </math>
</div>
or (see Milne's equation 24),
<div align="center">
<math>\biggl( \frac{\mathfrak{\Re}}{\mu_e}\biggr) \rho = \frac{1}{3}a_\mathrm{rad}T^3 \biggl( \frac{\beta}{1-\beta} \biggr) \, .</math>
</div>
 
If the parameter, <math>~\beta</math>, is constant throughout the envelope &#8212; which Milne assumes &#8212; then this last expression can be interpreted as defining a <math>~T(\rho)</math> function throughout the envelope of the form,
<div align="center">
<math>T = \biggl[ \biggl( \frac{\Re}{\mu_e}\biggr) \biggl(\frac{1-\beta}{\beta}\biggr) \frac{3}{a_\mathrm{rad}} \biggr]^{1/3} \rho^{1/3} \, .</math>
</div>
Now, returning to the definition of <math>~\beta</math>, we recognize that the total pressure in the envelope can be written in the form of a ''modified'' ideal gas relation, namely,
<div align="center">
<math>~P = \frac{1}{\beta}\biggl(\frac{\Re}{\mu_e}\biggr) \rho T \, ,</math>
</div>
with the ''specific'' <math>~T(\rho)</math> behavior just derived.  This allows us to write the envelope's total pressure as,
<div align="center">
<table border="0" cellpadding="5" align="center">
 
<tr>
  <td align="right">
<math>~P</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 50: Line 90:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~\rho_0 \theta^{3/2}</math>
<math>~\frac{1}{\beta}\biggl(\frac{\Re}{\mu_e}\biggr) \rho
\biggl[ \biggl( \frac{\Re}{\mu_e}\biggr) \biggl(\frac{1-\beta}{\beta}\biggr) \frac{3}{a_\mathrm{rad}} \biggr]^{1/3} \rho^{1/3}</math>
   </td>
   </td>
</tr>
</tr>
Line 56: Line 97:
<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~P</math>
&nbsp;
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 62: Line 103:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~K_c \rho_0^{1+1/n_c} \theta^{n_c + 1}</math>
<math>~  
\biggl[ \biggl( \frac{\Re}{\mu_e}\biggr)^4 \biggl(\frac{1-\beta}{\beta^4}\biggr) \frac{3}{a_\mathrm{rad}} \biggr]^{1/3} \rho^{1 + 1/3}</math>
  </td>
</tr>
</table>
</div>
 
which can be immediately associated with a polytropic relation of the form,
<div align="center">
<math>~P = K_e \rho^{1 + 1/n_e} \, ,</math>
</div>
with,
<div align="center">
<table border="0" cellpadding="5" align="center">
 
<tr>
  <td align="right">
<math>~n_e</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 68: Line 126:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~K_c \rho_0^{5/3} \theta^{5/2}</math>
<math>~3 \, ,</math>
   </td>
   </td>
</tr>
</tr>
Line 74: Line 132:
<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~r</math>
<math>~K_e</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 80: Line 138:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~\biggl[ \frac{(n_c + 1)K_c}{4\pi G} \biggr]^{1/2} \rho_0^{(1-n_c)/(2n_c)} \xi</math>
<math>~\biggl[ \biggl( \frac{\Re}{\mu_e}\biggr)^4 \biggl(\frac{1-\beta}{\beta^4}\biggr) \frac{3}{a_\mathrm{rad}} \biggr]^{1/3} \, .</math>
  </td>
</tr>
</table>
</div>
So, from the solution, <math>~\phi(\eta)</math>, to the Lane-Emden equation of index <math>~n=3</math>, we will be able to determine that,
<div align="center">
<table border="0" cellpadding="5" align="center">
 
<tr>
  <td align="right">
<math>~\rho</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 86: Line 155:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~\biggl[ \frac{5K_c}{8\pi G} \biggr]^{1/2} \rho_0^{-1/6} \xi</math>
<math>~\rho_e \phi^3 \, ,</math>
   </td>
   </td>
</tr>
</tr>
</table>
</div>
and,
<div align="center">
<table border="0" cellpadding="5" align="center">


<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~M_r</math>
<math>~r</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 98: Line 172:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~4\pi \biggl[ \frac{(n_c + 1)K_c}{4\pi G} \biggr]^{3/2} \rho_0^{(3-n_c)/(2n_c)} \biggl(-\xi^2 \frac{d\theta}{d\xi} \biggr)</math>
<math>~a_3 \eta \, ,</math>
  </td>
</tr>
</table>
</div>
where &#8212; see our [[User:Tohline/SSC/Structure/Polytropes#Lane-Emden_Equation|general introduction to the Lane-Emden equation]] &#8212;
<div align="center">
<table border="0" cellpadding="5" align="center">
 
<tr>
  <td align="right">
<math>~a_3^2</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 104: Line 189:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~\biggl[ \frac{5^3K_c^3}{2^5 \pi G^3} \biggr]^{1/2} \rho_0^{1/2} \biggl(-\xi^2 \frac{d\theta}{d\xi} \biggr)</math>
<math>~\biggl( \frac{K_e}{\pi G}\biggr) \rho_e^{-2/3} \, .</math>
   </td>
   </td>
</tr>
</tr>
</table>
</table>
</div>
This is the envelope structure that will be incorporated into our derivation of the bipolytrope's properties, below.


</div>
In contrast to this approach, [http://adsabs.harvard.edu/abs/1930MNRAS..91....4M Milne (1930)] chose to relate the solution to the envelope's <math>~n=3</math> Lane-Emden equation directly to the temperature via the expression,


===Step 5: Interface Conditions===


<div align="center">
<div align="center">
<table border="0" cellpadding="3">
<math>T = \lambda \phi \, ,</math>
<tr>
</div>
  <td colspan="3">
deducing that the corresponding radial scale-factor is (see Milne's equation 27),
&nbsp;
<div align="center">
  </td>
<table border="0" cellpadding="5" align="center">
  <td align="left" colspan="2">
Setting <math>~n_c=\tfrac{3}{2}</math>, <math>~n_e=3</math>, and <math>~\phi_i = 1 ~~~~\Rightarrow</math>
  </td>
</tr>


<tr>
<tr>
   <td align="right">
   <td align="right">
<math>\frac{\rho_e}{\rho_0}</math>
<math>~a^2_\mathrm{Milne}</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 132: Line 214:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>\biggl( \frac{\mu_e}{\mu_c} \biggr) \theta^{n_c}_i \phi_i^{-n_e}</math>
<math>~\frac{1}{\lambda^2} \biggl(\frac{\Re}{\mu_e}\biggr)^{2} \frac{(1-\beta)}{\beta^2} \biggl(\frac{3}{\pi a_\mathrm{rad}G}\biggr)\, .</math>
  </td>
</tr>
</table>
</div>
In order to demonstrate the relationship between our radial scale-factor <math>~(a_3)</math> and Milne's, we note that,
 
<div align="center">
<table border="0" cellpadding="5" align="center">
 
<tr>
  <td align="right">
<math>~\phi^3</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 138: Line 232:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>\biggl( \frac{\mu_e}{\mu_c} \biggr) \theta^{3/2}_i </math>
<math>~\biggl(\frac{T}{\lambda}\biggr)^3 = \frac{\rho}{\rho_e}</math>
   </td>
   </td>
</tr>
</tr>
Line 144: Line 238:
<tr>
<tr>
   <td align="right">
   <td align="right">
<math>\biggl( \frac{K_e}{K_c} \biggr) </math>
<math>~\Rightarrow~~~~~\lambda^3</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 150: Line 244:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>\rho_0^{1/n_c - 1/n_e}\biggl( \frac{\mu_e}{\mu_c} \biggr)^{-(1+1/n_e)} \theta^{1 - n_c/n_e}_i</math>
<math>~\rho_e \biggl(\frac{T^3}{\rho}\biggr)</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 156: Line 256:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>\rho_0^{1/3}\biggl( \frac{\mu_e}{\mu_c} \biggr)^{-4/3} \theta^{1/2}_i</math>
<math>~\rho_e \biggl[ \biggl( \frac{\Re}{\mu_e}\biggr) \biggl(\frac{1-\beta}{\beta}\biggr) \frac{3}{a_\mathrm{rad}} \biggr]</math>
   </td>
   </td>
</tr>
</tr>
Line 162: Line 262:
<tr>
<tr>
   <td align="right">
   <td align="right">
<math>\frac{\eta_i}{\xi_i}</math>
<math>~\Rightarrow~~~~~\lambda^{-2}</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 168: Line 268:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>\biggl[ \frac{n_c + 1}{n_e+1} \biggr]^{1/2} \biggl( \frac{\mu_e}{\mu_c}\biggr) \theta_i^{(n_c-1)/2} \phi_i^{(1-n_e)/2}</math>
<math>~\rho_e^{-2/3} \biggl[ \biggl( \frac{\Re}{\mu_e}\biggr) \biggl(\frac{1-\beta}{\beta}\biggr) \frac{3}{a_\mathrm{rad}} \biggr]^{-2/3} \, .</math>
  </td>
</tr>
</table>
</div>
Hence,
<div align="center">
<table border="0" cellpadding="5" align="center">
 
<tr>
  <td align="right">
<math>~a^2_\mathrm{Milne}</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 174: Line 285:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>\biggl(\frac{5}{8}\biggr)^{1/2} \biggl( \frac{\mu_e}{\mu_c}\biggr) \theta_i^{1/4}</math>
<math>~\rho_e^{-2/3} \biggl[ \biggl( \frac{\Re}{\mu_e}\biggr) \biggl(\frac{1-\beta}{\beta}\biggr) \frac{3}{a_\mathrm{rad}} \biggr]^{-2/3}\biggl(\frac{\Re}{\mu_e}\biggr)^{2} \frac{(1-\beta)}{\beta^2} \biggl(\frac{3}{\pi a_\mathrm{rad}G}\biggr)</math>
   </td>
   </td>
</tr>
</tr>
Line 180: Line 291:
<tr>
<tr>
   <td align="right">
   <td align="right">
<math>\biggl( \frac{d\phi}{d\eta} \biggr)_i</math>
&nbsp;
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 186: Line 297:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>\biggl[ \frac{n_c + 1}{n_e + 1} \biggr]^{1/2} \theta_i^{- (n_c + 1)/2} \phi_i^{(n_e+1)/2} \biggl( \frac{d\theta}{d\xi} \biggr)_i</math>
<math>~\rho_e^{-2/3} \biggl( \frac{1}{\pi G} \biggr) \biggl[ \biggl(\frac{\Re}{\mu_e}\biggr)^{4} \frac{(1-\beta)}{\beta^{4}} \biggl(\frac{3}{a_\mathrm{rad}}\biggr) \biggr]^{1/3}</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 192: Line 309:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>\biggl(\frac{5}{8}\biggr)^{1/2} \theta_i^{- 5/4} \biggl( \frac{d\theta}{d\xi} \biggr)_i</math>
<math>~\rho_e^{-2/3} \biggl( \frac{K_e}{\pi G} \biggr) \, .</math>
   </td>
   </td>
</tr>
</tr>
</table>
</table>
</div>
</div>
It is clear, therefore, that the two radial scale-factors are the same.
===Core===
Alternatively, [http://adsabs.harvard.edu/abs/1930MNRAS..91....4M Milne (1930)] assumed that the (non-relativistic) electron degeneracy pressure dominates over the other two pressure contributions in the core.
==Our Derivation==
===Steps 2 &amp; 3===


===Step 8:  Throughout the envelope <math>~(\eta_i \le \eta \le \eta_s)</math>===
Throughout the core, the properties of this bipolytrope can be expressed in terms of the Lane-Emden function, <math>~\theta(\xi)</math>, which derives from a solution of the 2<sup>nd</sup>-order ODE,
<div align="center">
<math>
\frac{1}{\xi^2} \frac{d}{d\xi} \biggl[ \xi^2 \frac{d\theta}{d\xi}\biggr] = - \theta^{3/2} \, ,
</math>
</div>
subject to the boundary conditions,
<div align="center">
<math>~\theta = 1</math> &nbsp; &nbsp; &nbsp; and &nbsp; &nbsp; &nbsp; <math>~\frac{d\theta}{d\xi} = 0</math>
&nbsp; &nbsp; &nbsp; at &nbsp; &nbsp; &nbsp; <math>~\xi = 0</math>.
</div>
 
The first zero of the function <math>~\theta(\xi)</math> and, hence, the surface of the corresponding isolated <math>~n=\tfrac{3}{2}</math> polytrope is located at <math>~\xi_s = 3.65375</math> (see Table 4 in chapter IV on p. 96 of [[User:Tohline/Appendix/References#C67|[<b><font color="red">C67</font></b>]]]).  Hence, the interface between the core and the envelope can be positioned anywhere within the range, <math>~0 < \xi_i < \xi_s = 3.65375</math>.
 
===Step 4:  Throughout the core <math>~(0 \le \xi \le \xi_i)</math>===
<div align="center">
<div align="center">
<table border="0" cellpadding="3">
<table border="0" cellpadding="3">
<tr>
<tr>
   <td align="center" colspan="5">
   <td align="center" colspan="3">
Specify:  <math>~K_c</math> and <math>~\rho_0 ~\Rightarrow</math>
  </td>
  <td colspan="2">
&nbsp;
&nbsp;
  </td>
  <td align="left" colspan="2">
Knowing:  <math>~K_e/K_c</math> and <math>~\rho_e/\rho_0</math> from Step 5 &nbsp; <math>\Rightarrow</math>
   </td>
   </td>
</tr>
</tr>
Line 217: Line 358:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~\rho_e \phi^{n_e}</math>
<math>~\rho_0 \theta^{n_c}</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 223: Line 364:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~\rho_0 \biggl(\frac{\rho_e}{\rho_0}\biggr) \phi^3</math>
<math>~\rho_0 \theta^{3/2}</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\rho_0 \biggl( \frac{\mu_e}{\mu_c} \biggr) \theta^{3/2}_i \phi^3</math>
   </td>
   </td>
</tr>
</tr>
Line 241: Line 376:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~K_e \rho_e^{1+1/n_e} \phi^{n_e + 1}</math>
<math>~K_c \rho_0^{1+1/n_c} \theta^{n_c + 1}</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 247: Line 382:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>K_c \rho_0^{4/3} \biggl(\frac{K_e }{K_c}\biggr) \biggl(\frac{\rho_e}{\rho_0}\biggr)^{4/3} \phi^{4}</math>
<math>~K_c \rho_0^{5/3} \theta^{5/2}</math>
  </td>
  <td align="center">
<math>=</math>
  </td>
  <td align="left">
<math>K_c \rho_0^{5/3} \theta^{5/2}_i \phi^{4}</math>
   </td>
   </td>
</tr>
</tr>
Line 265: Line 394:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~\biggl[ \frac{(n_e + 1)K_e}{4\pi G} \biggr]^{1/2} \rho_e^{(1-n_e)/(2n_e)} \eta</math>
<math>~\biggl[ \frac{(n_c + 1)K_c}{4\pi G} \biggr]^{1/2} \rho_0^{(1-n_c)/(2n_c)} \xi</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 271: Line 400:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~\biggl[ \frac{K_c}{\pi G} \biggr]^{1/2} \rho_0^{-1/3} \biggl( \frac{K_e}{K_c}\biggr)^{1/2} \biggl( \frac{\rho_e}{\rho_0} \biggr)^{-1/3} \eta</math>
<math>~\biggl[ \frac{5K_c}{8\pi G} \biggr]^{1/2} \rho_0^{-1/6} \xi</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\biggl[ \frac{K_c}{\pi G} \biggr]^{1/2} \rho_0^{-1/6} \biggl( \frac{\mu_e}{\mu_c}\biggr)^{-1} \theta_i^{-1/4} \eta</math>
   </td>
   </td>
</tr>
</tr>
Line 289: Line 412:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~4\pi \biggl[ \frac{(n_e + 1)K_e}{4\pi G} \biggr]^{3/2} \rho_e^{(3-n_e)/(2n_e)} \biggl(-\eta^2 \frac{d\phi}{d\eta} \biggr)</math>
<math>~4\pi \biggl[ \frac{(n_c + 1)K_c}{4\pi G} \biggr]^{3/2} \rho_0^{(3-n_c)/(2n_c)} \biggl(-\xi^2 \frac{d\theta}{d\xi} \biggr)</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 295: Line 418:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~4\pi \biggl[ \frac{K_c}{\pi G} \biggr]^{3/2} \biggl( \frac{K_e}{K_c}\biggr)^{3/2} \biggl(-\eta^2 \frac{d\phi}{d\eta} \biggr)</math>
<math>~\biggl[ \frac{5^3K_c^3}{2^5 \pi G^3} \biggr]^{1/2} \rho_0^{1/2} \biggl(-\xi^2 \frac{d\theta}{d\xi} \biggr)</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\biggl( \frac{2^4}{\pi} \biggr)^{1/2} \biggl[ \frac{K_c}{G} \biggr]^{3/2} \rho_0^{1/2} \biggl( \frac{\mu_e}{\mu_c}\biggr)^{-2} \theta_i^{3/4}
\biggl(-\eta^2 \frac{d\phi}{d\eta} \biggr)</math>
   </td>
   </td>
</tr>
</tr>
Line 309: Line 425:
</div>
</div>


==Milne's (1930) Presentation==
===Step 5: Interface Conditions===


{{LSU_WorkInProgress}}
<div align="center">
===Envelope's Equation of State===
<table border="0" cellpadding="3">
As has been detailed in our [[User:Tohline/SR#Equation_of_State|introductory discussion of analytically expressible equations of state]] and as is summarized in the following table, often the total gas pressure can be expressed as the sum of three separate components:  a component of ideal gas pressure, a component of radiation pressure, and a component due to a degenerate electron gas.
 
<table width="95%" align="center" border=1 cellpadding=5>
<tr>
<tr>
<td align="center" width="25%"><font color="darkblue">Ideal Gas</font></td>
  <td colspan="3">
<td align="center"><font color="darkblue">Degenerate Electron Gas</font></td>
&nbsp;
<td align="center" width="25%"><font color="darkblue">Radiation</font></td>
  </td>
</tr>
  <td align="left" colspan="2">
<tr>
Setting <math>~n_c=\tfrac{3}{2}</math>, <math>~n_e=3</math>, and <math>~\phi_i = 1 ~~~~\Rightarrow</math>
<td align="center">
  </td>
{{User:Tohline/Math/EQ_EOSideal0A}}
</td>
<td align="center">
{{User:Tohline/Math/EQ_ZTFG01}}
</td>
<td align="center">
{{User:Tohline/Math/EQ_EOSradiation01}}
</td>
</tr>
</tr>
</table>
[http://adsabs.harvard.edu/abs/1930MNRAS..91....4M Milne (1930)] considered that the effects of electron degeneracy pressure could be ignored in the envelope of his composite polytrope and, accordingly, employed an expression for the total pressure of the form,
<div align="center">
<table border="0" cellpadding="5" align="center">


<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~P</math>
<math>\frac{\rho_e}{\rho_0}</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 346: Line 446:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~P_\mathrm{gas} + P_\mathrm{rad} \, .</math>
<math>\biggl( \frac{\mu_e}{\mu_c} \biggr) \theta^{n_c}_i \phi_i^{-n_e}</math>
  </td>
</tr>
</table>
</div>
 
Milne also introduced the parameter, <math>~\beta</math>, to define the ratio of gas pressure to total pressure in the envelope, that is,
<div align="center">
<math>\beta \equiv \frac{P_\mathrm{gas}}{P} \biggr|_\mathrm{env} \, ,</math>
</div>
in which case, also,
<div align="center">
<math>\frac{P_\mathrm{rad}}{P} \biggr|_\mathrm{env} = 1-\beta </math>
&nbsp; &nbsp; &nbsp; &nbsp; and &nbsp; &nbsp; &nbsp; &nbsp;
<math>\frac{P_\mathrm{gas}}{P_\mathrm{rad}} \biggr|_\mathrm{env} = \frac{\beta}{1-\beta} \, , </math>
</div>
or (see Milne's equation 24),
<div align="center">
<math>\biggl( \frac{\mathfrak{\Re}}{\mu_e}\biggr) \rho = \frac{1}{3}a_\mathrm{rad}T^3 \biggl( \frac{\beta}{1-\beta} \biggr) \, .</math>
</div>
 
If the parameter, <math>~\beta</math>, is constant throughout the envelope &#8212; which Milne assumes &#8212; then this last expression can be interpreted as defining a <math>~T(\rho)</math> function throughout the envelope of the form,
<div align="center">
<math>T = \biggl[ \biggl( \frac{\Re}{\mu_e}\biggr) \biggl(\frac{1-\beta}{\beta}\biggr) \frac{3}{a_\mathrm{rad}} \biggr]^{1/3} \rho^{1/3} \, .</math>
</div>
Now, returning to the definition of <math>~\beta</math>, we recognize that the total pressure in the envelope can be written in the form of a (modified) "ideal gas" relation, namely,
<div align="center">
<math>~P = \frac{1}{\beta}\biggl(\frac{\Re}{\mu_e}\biggr) \rho T \, ,</math>
</div>
with the ''specific'' <math>~T(\rho)</math> behavior just derived.  This allows us to write the envelope's total pressure as,
<div align="center">
<table border="0" cellpadding="5" align="center">
 
<tr>
  <td align="right">
<math>~P</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 387: Line 452:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~\frac{1}{\beta}\biggl(\frac{\Re}{\mu_e}\biggr) \rho
<math>\biggl( \frac{\mu_e}{\mu_c} \biggr) \theta^{3/2}_i </math>
\biggl[ \biggl( \frac{\Re}{\mu_e}\biggr) \biggl(\frac{1-\beta}{\beta}\biggr) \frac{3}{a_\mathrm{rad}} \biggr]^{1/3} \rho^{1/3}</math>
   </td>
   </td>
</tr>
</tr>
Line 394: Line 458:
<tr>
<tr>
   <td align="right">
   <td align="right">
&nbsp;
<math>\biggl( \frac{K_e}{K_c} \biggr) </math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 400: Line 464:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~
<math>\rho_0^{1/n_c - 1/n_e}\biggl( \frac{\mu_e}{\mu_c} \biggr)^{-(1+1/n_e)} \theta^{1 - n_c/n_e}_i</math>
\biggl[ \biggl( \frac{\Re}{\mu_e}\biggr)^4 \biggl(\frac{1-\beta}{\beta^4}\biggr) \frac{3}{a_\mathrm{rad}} \biggr]^{1/3} \rho^{1 + 1/3}</math>
  </td>
</tr>
</table>
</div>
 
which can be immediately associated with a polytropic relation of the form,
<div align="center">
<math>~P = K_e \rho^{1 + 1/n_e} \, ,</math>
</div>
with,
<div align="center">
<table border="0" cellpadding="5" align="center">
 
<tr>
  <td align="right">
<math>~n_e</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 423: Line 470:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~3 \, ,</math>
<math>\rho_0^{1/3}\biggl( \frac{\mu_e}{\mu_c} \biggr)^{-4/3} \theta^{1/2}_i</math>
   </td>
   </td>
</tr>
</tr>
Line 429: Line 476:
<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~K_e</math>
<math>\frac{\eta_i}{\xi_i}</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 435: Line 482:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~\biggl[ \biggl( \frac{\Re}{\mu_e}\biggr)^4 \biggl(\frac{1-\beta}{\beta^4}\biggr) \frac{3}{a_\mathrm{rad}} \biggr]^{1/3} \, .</math>
<math>\biggl[ \frac{n_c + 1}{n_e+1} \biggr]^{1/2} \biggl( \frac{\mu_e}{\mu_c}\biggr) \theta_i^{(n_c-1)/2} \phi_i^{(1-n_e)/2}</math>
  </td>
</tr>
</table>
</div>
So, from the solution, <math>~\theta(\xi)</math>, to the Lane-Emden equation of index <math>~n=3</math>, we will be able to determine that,
<div align="center">
<table border="0" cellpadding="5" align="center">
 
<tr>
  <td align="right">
<math>~\rho</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 452: Line 488:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~\rho_e \theta^3 \, ,</math>
<math>\biggl(\frac{5}{8}\biggr)^{1/2} \biggl( \frac{\mu_e}{\mu_c}\biggr) \theta_i^{1/4}</math>
   </td>
   </td>
</tr>
</tr>
</table>
</div>
and,
<div align="center">
<table border="0" cellpadding="5" align="center">


<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~r</math>
<math>\biggl( \frac{d\phi}{d\eta} \biggr)_i</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 469: Line 500:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~a_3 \xi \, ,</math>
<math>\biggl[ \frac{n_c + 1}{n_e + 1} \biggr]^{1/2} \theta_i^{- (n_c + 1)/2} \phi_i^{(n_e+1)/2} \biggl( \frac{d\theta}{d\xi} \biggr)_i</math>
  </td>
</tr>
</table>
</div>
where &#8212; see our [[User:Tohline/SSC/Structure/Polytropes#Lane-Emden_Equation|general introduction to the Lane-Emden equation]] &#8212;
<div align="center">
<table border="0" cellpadding="5" align="center">
 
<tr>
  <td align="right">
<math>~a_3^2</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 486: Line 506:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~\biggl( \frac{K_e}{\pi G}\biggr) \rho_e^{-2/3} \, .</math>
<math>\biggl(\frac{5}{8}\biggr)^{1/2} \theta_i^{- 5/4} \biggl( \frac{d\theta}{d\xi} \biggr)_i</math>
   </td>
   </td>
</tr>
</tr>
Line 492: Line 512:
</div>
</div>


In contrast to this approach, [http://adsabs.harvard.edu/abs/1930MNRAS..91....4M Milne (1930)] chose to relate the solution to the envelope's <math>~n=3</math> Lane-Emden equation directly to the temperature via the expression,
===Step 8: Throughout the envelope <math>~(\eta_i \le \eta \le \eta_s)</math>===
 
 
<div align="center">
<div align="center">
<math>T = \lambda \theta \, ,</math>
<table border="0" cellpadding="3">
</div>
<tr>
deducing that the corresponding radial scale-factor is (see Milne's equation 27),
  <td align="center" colspan="5">
<div align="center">
&nbsp;
<table border="0" cellpadding="5" align="center">
  </td>
 
  <td align="left" colspan="2">
Knowing:  <math>~K_e/K_c</math> and <math>~\rho_e/\rho_0</math> from Step 5 &nbsp; <math>\Rightarrow</math>
  </td>
</tr>
<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~a_3^2|_\mathrm{Milne}</math>
<math>~\rho</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 510: Line 531:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~\frac{1}{\lambda^2} \biggl(\frac{\Re}{\mu_e}\biggr)^{2} \frac{(1-\beta)}{\beta^2} \biggl(\frac{3}{\pi a_\mathrm{rad}G}\biggr)\, .</math>
<math>~\rho_e \phi^{n_e}</math>
  </td>
  <td align="center">
<math>~=</math>
   </td>
   </td>
</tr>
   <td align="left">
</table>
<math>~\rho_0 \biggl(\frac{\rho_e}{\rho_0}\biggr) \phi^3</math>
</div>
In order to demonstrate the relationship between these two radial scale factors, we note that,
 
<div align="center">
<table border="0" cellpadding="5" align="center">
 
<tr>
   <td align="right">
<math>~\theta^3</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 528: Line 543:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~\biggl(\frac{T}{\lambda}\biggr)^3 = \frac{\rho}{\rho_e}</math>
<math>~\rho_0 \biggl( \frac{\mu_e}{\mu_c} \biggr) \theta^{3/2}_i \phi^3</math>
   </td>
   </td>
</tr>
</tr>
Line 534: Line 549:
<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~\Rightarrow~~~~~\lambda^3</math>
<math>~P</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 540: Line 555:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~\rho_e \biggl(\frac{T^3}{\rho}\biggr)</math>
<math>~K_e \rho_e^{1+1/n_e} \phi^{n_e + 1}</math>
  </td>
  <td align="center">
<math>~=</math>
   </td>
   </td>
</tr>
   <td align="left">
 
<math>K_c \rho_0^{4/3} \biggl(\frac{K_e }{K_c}\biggr) \biggl(\frac{\rho_e}{\rho_0}\biggr)^{4/3} \phi^{4}</math>
<tr>
   <td align="right">
&nbsp;
   </td>
   </td>
   <td align="center">
   <td align="center">
<math>~=</math>
<math>=</math>
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~\rho_e \biggl[ \biggl( \frac{\Re}{\mu_e}\biggr) \biggl(\frac{1-\beta}{\beta}\biggr) \frac{3}{a_\mathrm{rad}} \biggr]</math>
<math>K_c \rho_0^{5/3} \theta^{5/2}_i \phi^{4}</math>
   </td>
   </td>
</tr>
</tr>
Line 558: Line 573:
<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~\Rightarrow~~~~~\lambda^{-2}</math>
<math>~r</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 564: Line 579:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~\rho_e^{-2/3} \biggl[ \biggl( \frac{\Re}{\mu_e}\biggr) \biggl(\frac{1-\beta}{\beta}\biggr) \frac{3}{a_\mathrm{rad}} \biggr]^{-2/3} \, .</math>
<math>~\biggl[ \frac{(n_e + 1)K_e}{4\pi G} \biggr]^{1/2} \rho_e^{(1-n_e)/(2n_e)} \eta</math>
  </td>
  <td align="center">
<math>~=</math>
   </td>
   </td>
</tr>
   <td align="left">
</table>
<math>~\biggl[ \frac{K_c}{\pi G} \biggr]^{1/2} \rho_0^{-1/3} \biggl( \frac{K_e}{K_c}\biggr)^{1/2} \biggl( \frac{\rho_e}{\rho_0} \biggr)^{-1/3} \eta</math>
</div>
Hence,
<div align="center">
<table border="0" cellpadding="5" align="center">
 
<tr>
   <td align="right">
<math>~a_3^2|_\mathrm{Milne}</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 581: Line 591:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~\rho_e^{-2/3} \biggl[ \biggl( \frac{\Re}{\mu_e}\biggr) \biggl(\frac{1-\beta}{\beta}\biggr) \frac{3}{a_\mathrm{rad}} \biggr]^{-2/3}\biggl(\frac{\Re}{\mu_e}\biggr)^{2} \frac{(1-\beta)}{\beta^2} \biggl(\frac{3}{\pi a_\mathrm{rad}G}\biggr)</math>
<math>~\biggl[ \frac{K_c}{\pi G} \biggr]^{1/2} \rho_0^{-1/6} \biggl( \frac{\mu_e}{\mu_c}\biggr)^{-1} \theta_i^{-1/4} \eta</math>
   </td>
   </td>
</tr>
</tr>
Line 587: Line 597:
<tr>
<tr>
   <td align="right">
   <td align="right">
&nbsp;
<math>~M_r</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 593: Line 603:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~\rho_e^{-2/3} \biggl( \frac{1}{\pi G} \biggr) \biggl[ \biggl(\frac{\Re}{\mu_e}\biggr)^{4} \frac{(1-\beta)}{\beta^{4}} \biggl(\frac{3}{a_\mathrm{rad}}\biggr) \biggr]^{1/3}</math>
<math>~4\pi \biggl[ \frac{(n_e + 1)K_e}{4\pi G} \biggr]^{3/2} \rho_e^{(3-n_e)/(2n_e)} \biggl(-\eta^2 \frac{d\phi}{d\eta} \biggr)</math>
  </td>
  <td align="center">
<math>~=</math>
   </td>
   </td>
</tr>
   <td align="left">
 
<math>~4\pi \biggl[ \frac{K_c}{\pi G} \biggr]^{3/2} \biggl( \frac{K_e}{K_c}\biggr)^{3/2} \biggl(-\eta^2 \frac{d\phi}{d\eta} \biggr)</math>
<tr>
   <td align="right">
&nbsp;
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 605: Line 615:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~\rho_e^{-2/3} \biggl( \frac{K_e}{\pi G} \biggr) \, .</math>
<math>~\biggl( \frac{2^4}{\pi} \biggr)^{1/2} \biggl[ \frac{K_c}{G} \biggr]^{3/2} \rho_0^{1/2} \biggl( \frac{\mu_e}{\mu_c}\biggr)^{-2} \theta_i^{3/4}
\biggl(-\eta^2 \frac{d\phi}{d\eta} \biggr)</math>
   </td>
   </td>
</tr>
</tr>
</table>
</table>
</div>
</div>
It is clear, therefore, that the two radial scale-factors are the same.


{{LSU_HBook_footer}}
{{LSU_HBook_footer}}

Revision as of 00:51, 29 May 2015

BiPolytrope with <math>n_c = \tfrac{3}{2}</math> and <math>n_e=3</math>

Whitworth's (1981) Isothermal Free-Energy Surface
|   Tiled Menu   |   Tables of Content   |  Banner Video   |  Tohline Home Page   |


Here we lay out the procedure for constructing a bipolytrope in which the core has an <math>~n_c=\tfrac{3}{2}</math> polytropic index and the envelope has an <math>~n_e=3</math> polytropic index. We will build our discussion around the work of E. A. Milne (1930, MNRAS, 91, 4). While this system cannot be described by closed-form, analytic expressions, it is of particular interest because — as far as we have been able to determine — its examination by Milne represents the first "composite polytrope" to be discussed in the astrophysics literature.

In deriving the properties of this model, we will follow the general solution steps for constructing a bipolytrope that are outlined in a separate chapter of this H_Book. That group of general solution steps was drawn largely from chapter IV, §28 of Chandrasekhar's book titled, "An Introduction to the Study of Stellar Structure" [C67]. At the end of that chapter (specifically, p. 182), Chandrasekhar acknowledges that Milne's "method is largely used in § 28." It seems fitting, therefore, that we highlight the features of the specific bipolytropic configuration that E. A. Milne (1930) chose to build.


Work-in-progress.png

Material that appears after this point in our presentation is under development and therefore
may contain incorrect mathematical equations and/or physical misinterpretations.
|   Go Home   |



Milne's (1930) Choice of Equations of State

As has been detailed in our introductory discussion of analytically expressible equations of state and as is summarized in the following table, often the total gas pressure can be expressed as the sum of three separate components: a component of ideal gas pressure, a component of radiation pressure, and a component due to a degenerate electron gas.

Ideal Gas Degenerate Electron Gas Radiation

LSU Key.png

<math>~P_\mathrm{gas} = \frac{\Re}{\bar{\mu}} \rho T</math>

LSU Key.png

<math>~P_\mathrm{deg} = A_\mathrm{F} F(\chi) </math>

where:  <math>F(\chi) \equiv \chi(2\chi^2 - 3)(\chi^2 + 1)^{1/2} + 3\sinh^{-1}\chi</math>

and:   

<math>\chi \equiv (\rho/B_\mathrm{F})^{1/3}</math>

LSU Key.png

<math>~P_\mathrm{rad} = \frac{1}{3} a_\mathrm{rad} T^4</math>

Envelope

Milne (1930) considered that the effects of electron degeneracy pressure could be ignored in the envelope of his composite polytrope and, accordingly, employed an expression for the total pressure of the form,

<math>~P</math>

<math>~=</math>

<math>~P_\mathrm{gas} + P_\mathrm{rad} \, .</math>

Milne also introduced the parameter, <math>~\beta</math>, to define the ratio of gas pressure to total pressure in the envelope, that is,

<math>\beta \equiv \frac{P_\mathrm{gas}}{P} \biggr|_\mathrm{env} \, ,</math>

in which case, also,

<math>\frac{P_\mathrm{rad}}{P} \biggr|_\mathrm{env} = 1-\beta </math>         and         <math>\frac{P_\mathrm{gas}}{P_\mathrm{rad}} \biggr|_\mathrm{env} = \frac{\beta}{1-\beta} \, , </math>

or (see Milne's equation 24),

<math>\biggl( \frac{\mathfrak{\Re}}{\mu_e}\biggr) \rho = \frac{1}{3}a_\mathrm{rad}T^3 \biggl( \frac{\beta}{1-\beta} \biggr) \, .</math>

If the parameter, <math>~\beta</math>, is constant throughout the envelope — which Milne assumes — then this last expression can be interpreted as defining a <math>~T(\rho)</math> function throughout the envelope of the form,

<math>T = \biggl[ \biggl( \frac{\Re}{\mu_e}\biggr) \biggl(\frac{1-\beta}{\beta}\biggr) \frac{3}{a_\mathrm{rad}} \biggr]^{1/3} \rho^{1/3} \, .</math>

Now, returning to the definition of <math>~\beta</math>, we recognize that the total pressure in the envelope can be written in the form of a modified ideal gas relation, namely,

<math>~P = \frac{1}{\beta}\biggl(\frac{\Re}{\mu_e}\biggr) \rho T \, ,</math>

with the specific <math>~T(\rho)</math> behavior just derived. This allows us to write the envelope's total pressure as,

<math>~P</math>

<math>~=</math>

<math>~\frac{1}{\beta}\biggl(\frac{\Re}{\mu_e}\biggr) \rho \biggl[ \biggl( \frac{\Re}{\mu_e}\biggr) \biggl(\frac{1-\beta}{\beta}\biggr) \frac{3}{a_\mathrm{rad}} \biggr]^{1/3} \rho^{1/3}</math>

 

<math>~=</math>

<math>~ \biggl[ \biggl( \frac{\Re}{\mu_e}\biggr)^4 \biggl(\frac{1-\beta}{\beta^4}\biggr) \frac{3}{a_\mathrm{rad}} \biggr]^{1/3} \rho^{1 + 1/3}</math>

which can be immediately associated with a polytropic relation of the form,

<math>~P = K_e \rho^{1 + 1/n_e} \, ,</math>

with,

<math>~n_e</math>

<math>~=</math>

<math>~3 \, ,</math>

<math>~K_e</math>

<math>~=</math>

<math>~\biggl[ \biggl( \frac{\Re}{\mu_e}\biggr)^4 \biggl(\frac{1-\beta}{\beta^4}\biggr) \frac{3}{a_\mathrm{rad}} \biggr]^{1/3} \, .</math>

So, from the solution, <math>~\phi(\eta)</math>, to the Lane-Emden equation of index <math>~n=3</math>, we will be able to determine that,

<math>~\rho</math>

<math>~=</math>

<math>~\rho_e \phi^3 \, ,</math>

and,

<math>~r</math>

<math>~=</math>

<math>~a_3 \eta \, ,</math>

where — see our general introduction to the Lane-Emden equation

<math>~a_3^2</math>

<math>~=</math>

<math>~\biggl( \frac{K_e}{\pi G}\biggr) \rho_e^{-2/3} \, .</math>

This is the envelope structure that will be incorporated into our derivation of the bipolytrope's properties, below.

In contrast to this approach, Milne (1930) chose to relate the solution to the envelope's <math>~n=3</math> Lane-Emden equation directly to the temperature via the expression,


<math>T = \lambda \phi \, ,</math>

deducing that the corresponding radial scale-factor is (see Milne's equation 27),

<math>~a^2_\mathrm{Milne}</math>

<math>~=</math>

<math>~\frac{1}{\lambda^2} \biggl(\frac{\Re}{\mu_e}\biggr)^{2} \frac{(1-\beta)}{\beta^2} \biggl(\frac{3}{\pi a_\mathrm{rad}G}\biggr)\, .</math>

In order to demonstrate the relationship between our radial scale-factor <math>~(a_3)</math> and Milne's, we note that,

<math>~\phi^3</math>

<math>~=</math>

<math>~\biggl(\frac{T}{\lambda}\biggr)^3 = \frac{\rho}{\rho_e}</math>

<math>~\Rightarrow~~~~~\lambda^3</math>

<math>~=</math>

<math>~\rho_e \biggl(\frac{T^3}{\rho}\biggr)</math>

 

<math>~=</math>

<math>~\rho_e \biggl[ \biggl( \frac{\Re}{\mu_e}\biggr) \biggl(\frac{1-\beta}{\beta}\biggr) \frac{3}{a_\mathrm{rad}} \biggr]</math>

<math>~\Rightarrow~~~~~\lambda^{-2}</math>

<math>~=</math>

<math>~\rho_e^{-2/3} \biggl[ \biggl( \frac{\Re}{\mu_e}\biggr) \biggl(\frac{1-\beta}{\beta}\biggr) \frac{3}{a_\mathrm{rad}} \biggr]^{-2/3} \, .</math>

Hence,

<math>~a^2_\mathrm{Milne}</math>

<math>~=</math>

<math>~\rho_e^{-2/3} \biggl[ \biggl( \frac{\Re}{\mu_e}\biggr) \biggl(\frac{1-\beta}{\beta}\biggr) \frac{3}{a_\mathrm{rad}} \biggr]^{-2/3}\biggl(\frac{\Re}{\mu_e}\biggr)^{2} \frac{(1-\beta)}{\beta^2} \biggl(\frac{3}{\pi a_\mathrm{rad}G}\biggr)</math>

 

<math>~=</math>

<math>~\rho_e^{-2/3} \biggl( \frac{1}{\pi G} \biggr) \biggl[ \biggl(\frac{\Re}{\mu_e}\biggr)^{4} \frac{(1-\beta)}{\beta^{4}} \biggl(\frac{3}{a_\mathrm{rad}}\biggr) \biggr]^{1/3}</math>

 

<math>~=</math>

<math>~\rho_e^{-2/3} \biggl( \frac{K_e}{\pi G} \biggr) \, .</math>

It is clear, therefore, that the two radial scale-factors are the same.

Core

Alternatively, Milne (1930) assumed that the (non-relativistic) electron degeneracy pressure dominates over the other two pressure contributions in the core.


Our Derivation

Steps 2 & 3

Throughout the core, the properties of this bipolytrope can be expressed in terms of the Lane-Emden function, <math>~\theta(\xi)</math>, which derives from a solution of the 2nd-order ODE,

<math> \frac{1}{\xi^2} \frac{d}{d\xi} \biggl[ \xi^2 \frac{d\theta}{d\xi}\biggr] = - \theta^{3/2} \, , </math>

subject to the boundary conditions,

<math>~\theta = 1</math>       and       <math>~\frac{d\theta}{d\xi} = 0</math>       at       <math>~\xi = 0</math>.

The first zero of the function <math>~\theta(\xi)</math> and, hence, the surface of the corresponding isolated <math>~n=\tfrac{3}{2}</math> polytrope is located at <math>~\xi_s = 3.65375</math> (see Table 4 in chapter IV on p. 96 of [C67]). Hence, the interface between the core and the envelope can be positioned anywhere within the range, <math>~0 < \xi_i < \xi_s = 3.65375</math>.

Step 4: Throughout the core <math>~(0 \le \xi \le \xi_i)</math>

Specify: <math>~K_c</math> and <math>~\rho_0 ~\Rightarrow</math>

 

<math>~\rho</math>

<math>~=</math>

<math>~\rho_0 \theta^{n_c}</math>

<math>~=</math>

<math>~\rho_0 \theta^{3/2}</math>

<math>~P</math>

<math>~=</math>

<math>~K_c \rho_0^{1+1/n_c} \theta^{n_c + 1}</math>

<math>~=</math>

<math>~K_c \rho_0^{5/3} \theta^{5/2}</math>

<math>~r</math>

<math>~=</math>

<math>~\biggl[ \frac{(n_c + 1)K_c}{4\pi G} \biggr]^{1/2} \rho_0^{(1-n_c)/(2n_c)} \xi</math>

<math>~=</math>

<math>~\biggl[ \frac{5K_c}{8\pi G} \biggr]^{1/2} \rho_0^{-1/6} \xi</math>

<math>~M_r</math>

<math>~=</math>

<math>~4\pi \biggl[ \frac{(n_c + 1)K_c}{4\pi G} \biggr]^{3/2} \rho_0^{(3-n_c)/(2n_c)} \biggl(-\xi^2 \frac{d\theta}{d\xi} \biggr)</math>

<math>~=</math>

<math>~\biggl[ \frac{5^3K_c^3}{2^5 \pi G^3} \biggr]^{1/2} \rho_0^{1/2} \biggl(-\xi^2 \frac{d\theta}{d\xi} \biggr)</math>

Step 5: Interface Conditions

 

Setting <math>~n_c=\tfrac{3}{2}</math>, <math>~n_e=3</math>, and <math>~\phi_i = 1 ~~~~\Rightarrow</math>

<math>\frac{\rho_e}{\rho_0}</math>

<math>~=</math>

<math>\biggl( \frac{\mu_e}{\mu_c} \biggr) \theta^{n_c}_i \phi_i^{-n_e}</math>

<math>~=</math>

<math>\biggl( \frac{\mu_e}{\mu_c} \biggr) \theta^{3/2}_i </math>

<math>\biggl( \frac{K_e}{K_c} \biggr) </math>

<math>~=</math>

<math>\rho_0^{1/n_c - 1/n_e}\biggl( \frac{\mu_e}{\mu_c} \biggr)^{-(1+1/n_e)} \theta^{1 - n_c/n_e}_i</math>

<math>~=</math>

<math>\rho_0^{1/3}\biggl( \frac{\mu_e}{\mu_c} \biggr)^{-4/3} \theta^{1/2}_i</math>

<math>\frac{\eta_i}{\xi_i}</math>

<math>~=</math>

<math>\biggl[ \frac{n_c + 1}{n_e+1} \biggr]^{1/2} \biggl( \frac{\mu_e}{\mu_c}\biggr) \theta_i^{(n_c-1)/2} \phi_i^{(1-n_e)/2}</math>

<math>~=</math>

<math>\biggl(\frac{5}{8}\biggr)^{1/2} \biggl( \frac{\mu_e}{\mu_c}\biggr) \theta_i^{1/4}</math>

<math>\biggl( \frac{d\phi}{d\eta} \biggr)_i</math>

<math>~=</math>

<math>\biggl[ \frac{n_c + 1}{n_e + 1} \biggr]^{1/2} \theta_i^{- (n_c + 1)/2} \phi_i^{(n_e+1)/2} \biggl( \frac{d\theta}{d\xi} \biggr)_i</math>

<math>~=</math>

<math>\biggl(\frac{5}{8}\biggr)^{1/2} \theta_i^{- 5/4} \biggl( \frac{d\theta}{d\xi} \biggr)_i</math>

Step 8: Throughout the envelope <math>~(\eta_i \le \eta \le \eta_s)</math>

 

Knowing: <math>~K_e/K_c</math> and <math>~\rho_e/\rho_0</math> from Step 5   <math>\Rightarrow</math>

<math>~\rho</math>

<math>~=</math>

<math>~\rho_e \phi^{n_e}</math>

<math>~=</math>

<math>~\rho_0 \biggl(\frac{\rho_e}{\rho_0}\biggr) \phi^3</math>

<math>~=</math>

<math>~\rho_0 \biggl( \frac{\mu_e}{\mu_c} \biggr) \theta^{3/2}_i \phi^3</math>

<math>~P</math>

<math>~=</math>

<math>~K_e \rho_e^{1+1/n_e} \phi^{n_e + 1}</math>

<math>~=</math>

<math>K_c \rho_0^{4/3} \biggl(\frac{K_e }{K_c}\biggr) \biggl(\frac{\rho_e}{\rho_0}\biggr)^{4/3} \phi^{4}</math>

<math>=</math>

<math>K_c \rho_0^{5/3} \theta^{5/2}_i \phi^{4}</math>

<math>~r</math>

<math>~=</math>

<math>~\biggl[ \frac{(n_e + 1)K_e}{4\pi G} \biggr]^{1/2} \rho_e^{(1-n_e)/(2n_e)} \eta</math>

<math>~=</math>

<math>~\biggl[ \frac{K_c}{\pi G} \biggr]^{1/2} \rho_0^{-1/3} \biggl( \frac{K_e}{K_c}\biggr)^{1/2} \biggl( \frac{\rho_e}{\rho_0} \biggr)^{-1/3} \eta</math>

<math>~=</math>

<math>~\biggl[ \frac{K_c}{\pi G} \biggr]^{1/2} \rho_0^{-1/6} \biggl( \frac{\mu_e}{\mu_c}\biggr)^{-1} \theta_i^{-1/4} \eta</math>

<math>~M_r</math>

<math>~=</math>

<math>~4\pi \biggl[ \frac{(n_e + 1)K_e}{4\pi G} \biggr]^{3/2} \rho_e^{(3-n_e)/(2n_e)} \biggl(-\eta^2 \frac{d\phi}{d\eta} \biggr)</math>

<math>~=</math>

<math>~4\pi \biggl[ \frac{K_c}{\pi G} \biggr]^{3/2} \biggl( \frac{K_e}{K_c}\biggr)^{3/2} \biggl(-\eta^2 \frac{d\phi}{d\eta} \biggr)</math>

<math>~=</math>

<math>~\biggl( \frac{2^4}{\pi} \biggr)^{1/2} \biggl[ \frac{K_c}{G} \biggr]^{3/2} \rho_0^{1/2} \biggl( \frac{\mu_e}{\mu_c}\biggr)^{-2} \theta_i^{3/4} \biggl(-\eta^2 \frac{d\phi}{d\eta} \biggr)</math>

Whitworth's (1981) Isothermal Free-Energy Surface

© 2014 - 2021 by Joel E. Tohline
|   H_Book Home   |   YouTube   |
Appendices: | Equations | Variables | References | Ramblings | Images | myphys.lsu | ADS |
Recommended citation:   Tohline, Joel E. (2021), The Structure, Stability, & Dynamics of Self-Gravitating Fluids, a (MediaWiki-based) Vistrails.org publication, https://www.vistrails.org/index.php/User:Tohline/citation