Difference between revisions of "User:Tohline/SSC/Stability BoundedCompositePolytropes"
(→Instabilities in Bounded and Composite Polytropes: Begin typing text for unbounded structures) |
(→Unbounded, Complete Polytropes: Finish showing agreement in determination of R_eq for unbounded polytropes) |
||
Line 119: | Line 119: | ||
<math> | <math> | ||
\biggl(\frac{an}{3b} \biggr)^{n/(n-3)} | \biggl(\frac{an}{3b} \biggr)^{n/(n-3)} | ||
</math> | </math> | ||
</td> | </td> | ||
</tr> | </tr> | ||
<tr> | |||
<td align="right"> | |||
<math>~\Rightarrow ~~~~~ R_\mathrm{eq}^{n-3}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>\frac{R_\mathrm{SWS}^{n-3}}{M_\mathrm{SWS}^{n-1}} \biggl( \frac{4\pi}{3\cdot 5^n}\biggr) \biggl(\frac{n+1}{n}\biggr)^n | |||
\biggl[ \frac{\mathfrak{f}_W^n \mathfrak{f}_M^{1-n}}{\mathfrak{f}_A^n} \biggr] M^{n-1} | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>\biggl( \frac{4\pi}{3\cdot 5^n}\biggr) | |||
\biggl[ \frac{\mathfrak{f}_W^n \mathfrak{f}_M^{1-n}}{\mathfrak{f}_A^n} \biggr] G^n K^{-n} M^{n-1} \, . | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | </table> | ||
</div> | |||
If one assumes that the equilibrium system has no internal structure — that is, that the interior density and temperature are uniform throughout — then <math>~\mathfrak{f}_M = \mathfrak{f}_A = \mathfrak{f}_W = 1</math> and this derived expression gives a good ''estimate'' of the equilibrium radius, given any choice of the pair of parameters, <math>~M</math> and <math>~K</math>. | |||
====Detailed Force Balance==== | |||
Alternatively, a solution of the, | |||
<div align="center"> | |||
<span id="LaneEmdenEquation"><font color="#770000">'''Lane-Emden Equation'''</font></span> | |||
<br /> | |||
{{User:Tohline/Math/EQ_SSLaneEmden01}} | |||
</div> | |||
gives information regarding the detailed interior structure of the equilibrium system via knowledge of the properties of the Lane-Emden function, <math>~\Theta_H(\xi)</math>, | |||
as well as an exact expression for the equilibrium radius, namely, | |||
<div align="center"> | |||
<math>~R_\mathrm{eq}^{n-3} | |||
= \frac{3^n}{(n+1)^n} \biggl(\frac{4\pi}{3}\biggr) G^n K^{-n} M^{n-1} \cdot \frac{\mathfrak{f}_M^{1-n}}{\xi_1^{2n}} \, , | |||
</math> | |||
</div> | |||
where, | |||
<div align="center"> | |||
<math>~\mathfrak{f}_M \equiv \frac{\bar\rho}{\rho_c} = \biggl(- \frac{3\Theta_H^'}{\xi} \biggr)_{\xi_1} \, .</math> | |||
</div> | |||
====Together==== | |||
Now, once the Lane-Emden function, <math>~\Theta_H</math>, is known from a detailed force-balance model, the other two structural form factors also can be straightforwardly determined. For unbounded, complete polytropes, the relevant expressions are, | |||
<div align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~\mathfrak{f}_W</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\frac{3^2\cdot 5}{5-n} \biggl[ \frac{\Theta_H^'}{\xi} \biggr]^2_{\xi_1} \, ,</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math>~\mathfrak{f}_A</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\frac{3(n+1) }{(5-n)} ~\biggl[ \Theta_H^' \biggr]^2_{\xi_1} \, .</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</div> | |||
Plugging the appropriate ratio of these two functions, namely, | |||
<div align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~\biggl[\frac{\mathfrak{f}_W}{\mathfrak{f}_A} \biggr]^n</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\biggl( \frac{3\cdot 5}{n+1} \biggr)^n \biggl[ \frac{1}{\xi} \biggr]^{2n}_{\xi_1} \, ,</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</div> | |||
into the expression for the equilibrium radius obtained from the free-energy analysis gives precisely the same answer as was obtained from the detailed force-balance analysis. Using either method of determination we conclude, therefore, that, | |||
<div align="center"> | |||
<math>~\frac{G R_\mathrm{eq}^{n-3}}{K^n M^{n-1}} | |||
= \frac{4\pi}{(n+1)^n} \cdot \xi_1^{-(n+1)} (-\Theta_H^')^{1-n}_{\xi_1} \, . | |||
</math> | |||
</div> | </div> | ||
Revision as of 21:09, 24 March 2015
Instabilities in Bounded and Composite Polytropes
| Tiled Menu | Tables of Content | Banner Video | Tohline Home Page | |
Unbounded, Complete Polytropes
Free-Energy Function and Its Derivatives
The free-energy function that is relevant to a discussion of the structure and stability of unbounded configurations having polytropic index, <math>~n</math>, has the form,
<math>~\mathcal{G}(x)</math> |
<math>~=</math> |
<math> -ax^{-1} +b x^{-3/n} + \mathcal{G}_0 \, , </math> |
where <math>~x \equiv R/R_\mathrm{SWS}</math> identifies the radius of the configuration and <math>\mathcal{G}_0</math> is an arbitrary constant. If the coefficients, <math>~a, b</math>, and <math>~c</math>, are held constant while varying the configuration's size, we see that,
<math>~\frac{d\mathcal{G}}{dx}</math> |
<math>~=</math> |
<math> x^{-2} \biggl[ a - \frac{3b}{n}\cdot x^{(n-3)/n} \biggr] \, , </math> |
and,
<math>~\frac{d^2\mathcal{G}}{dx^2}</math> |
<math>~=</math> |
<math> x^{-3} \biggl[ -2a + \frac{3(3+n)b}{n^2}\cdot x^{(n-3)/n} \biggr] \, . </math> |
In terms of the system's mass and its structural form factors, <math>~\mathfrak{f}_M</math>, <math>~\mathfrak{f}_A</math>, and <math>~\mathfrak{f}_W</math>, the two relevant coefficients are,
<math>~a</math> |
<math>~=</math> |
<math>~\frac{3}{5}\biggl(\frac{n+1}{n}\biggr) \biggl[ \biggl( \frac{M}{M_\mathrm{SWS}}\biggr) \cdot \frac{1}{\mathfrak{f}_M} \biggr]^2 \mathfrak{f}_W \, ,</math> |
<math>~b</math> |
<math>~=</math> |
<math>~n \biggl( \frac{3}{4\pi}\biggr)^{1/n} \biggl[ \biggl( \frac{M}{M_\mathrm{SWS}}\biggr) \cdot \frac{1}{\mathfrak{f}_M} \biggr]^{(n+1)/n} \mathfrak{f}_A \, . </math> |
Equilibrium Radius
A configuration's equilibrium radius, <math>~x_\mathrm{eq}</math>, can be determined one of two ways:
Extrema in the Free Energy
Equilibria are identified by extrema in the free-energy function. Setting <math>d\mathcal{G}/dx = 0</math>, we find,
<math>~x_\mathrm{eq}</math> |
<math>~=</math> |
<math> \biggl(\frac{an}{3b} \biggr)^{n/(n-3)} </math> |
<math>~\Rightarrow ~~~~~ R_\mathrm{eq}^{n-3}</math> |
<math>~=</math> |
<math>\frac{R_\mathrm{SWS}^{n-3}}{M_\mathrm{SWS}^{n-1}} \biggl( \frac{4\pi}{3\cdot 5^n}\biggr) \biggl(\frac{n+1}{n}\biggr)^n \biggl[ \frac{\mathfrak{f}_W^n \mathfrak{f}_M^{1-n}}{\mathfrak{f}_A^n} \biggr] M^{n-1} </math> |
|
<math>~=</math> |
<math>\biggl( \frac{4\pi}{3\cdot 5^n}\biggr) \biggl[ \frac{\mathfrak{f}_W^n \mathfrak{f}_M^{1-n}}{\mathfrak{f}_A^n} \biggr] G^n K^{-n} M^{n-1} \, . </math> |
If one assumes that the equilibrium system has no internal structure — that is, that the interior density and temperature are uniform throughout — then <math>~\mathfrak{f}_M = \mathfrak{f}_A = \mathfrak{f}_W = 1</math> and this derived expression gives a good estimate of the equilibrium radius, given any choice of the pair of parameters, <math>~M</math> and <math>~K</math>.
Detailed Force Balance
Alternatively, a solution of the,
Lane-Emden Equation
<math>~\frac{1}{\xi^2} \frac{d}{d\xi}\biggl( \xi^2 \frac{d\Theta_H}{d\xi} \biggr) = - \Theta_H^n</math> |
gives information regarding the detailed interior structure of the equilibrium system via knowledge of the properties of the Lane-Emden function, <math>~\Theta_H(\xi)</math>, as well as an exact expression for the equilibrium radius, namely,
<math>~R_\mathrm{eq}^{n-3} = \frac{3^n}{(n+1)^n} \biggl(\frac{4\pi}{3}\biggr) G^n K^{-n} M^{n-1} \cdot \frac{\mathfrak{f}_M^{1-n}}{\xi_1^{2n}} \, , </math>
where,
<math>~\mathfrak{f}_M \equiv \frac{\bar\rho}{\rho_c} = \biggl(- \frac{3\Theta_H^'}{\xi} \biggr)_{\xi_1} \, .</math>
Together
Now, once the Lane-Emden function, <math>~\Theta_H</math>, is known from a detailed force-balance model, the other two structural form factors also can be straightforwardly determined. For unbounded, complete polytropes, the relevant expressions are,
<math>~\mathfrak{f}_W</math> |
<math>~=</math> |
<math>~\frac{3^2\cdot 5}{5-n} \biggl[ \frac{\Theta_H^'}{\xi} \biggr]^2_{\xi_1} \, ,</math> |
<math>~\mathfrak{f}_A</math> |
<math>~=</math> |
<math>~\frac{3(n+1) }{(5-n)} ~\biggl[ \Theta_H^' \biggr]^2_{\xi_1} \, .</math> |
Plugging the appropriate ratio of these two functions, namely,
<math>~\biggl[\frac{\mathfrak{f}_W}{\mathfrak{f}_A} \biggr]^n</math> |
<math>~=</math> |
<math>~\biggl( \frac{3\cdot 5}{n+1} \biggr)^n \biggl[ \frac{1}{\xi} \biggr]^{2n}_{\xi_1} \, ,</math> |
into the expression for the equilibrium radius obtained from the free-energy analysis gives precisely the same answer as was obtained from the detailed force-balance analysis. Using either method of determination we conclude, therefore, that,
<math>~\frac{G R_\mathrm{eq}^{n-3}}{K^n M^{n-1}} = \frac{4\pi}{(n+1)^n} \cdot \xi_1^{-(n+1)} (-\Theta_H^')^{1-n}_{\xi_1} \, . </math>
Related Discussions
- Constructing BiPolytropes
- Analytic description of BiPolytrope with <math>(n_c, n_e) = (5,1)</math>
- Bonnor-Ebert spheres
- Schönberg-Chandrasekhar limiting mass
- Relationship between Bonnor-Ebert and Schönberg-Chandrasekhar limiting masses
- Wikipedia introduction to the Lane-Emden equation
- Wikipedia introduction to Polytropes
© 2014 - 2021 by Joel E. Tohline |