Difference between revisions of "User:Tohline/DarkMatter/UniformSphere"
(→Force Exerted by a Uniform-Density Shell or Sphere: Begin typing in notes from 1983) |
(→Tohline's Derivations Circa 1983: Add to old notes/derivation) |
||
Line 74: | Line 74: | ||
</table> | </table> | ||
</div> | </div> | ||
For a spherically symmetric mass distribution, <math>~\rho(r^')</math>, the magnitude of the force that is directed along the radial vector, <math>~\vec{r}^'</math>, and measured from the center of the mass distribution can be expressed as the following single integral over <math>~r^'</math>: | |||
<div align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~F(r) \equiv \vec{F}\cdot \frac{\vec{r}}{r} </math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ -2\pi G^' \int\limits_{R_1}^{R_2} \rho(r^') (r^')^2 | |||
\biggl[\frac{1}{r} + \frac{1}{2r^2 r^'} \biggl( r^2 - {r^'}^2 \biggr) \ln\biggl( \frac{r^' + r}{|r^' - r|} \biggr) \biggr] dr^' | |||
\, .</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</div> | |||
This integral can be completed analytically if <math>~\rho(r^') = \rho_0</math>, that is, for a uniform-density mass distribution. Independent of whether the limits of integration, <math>~R_1</math> and <math>~R_2</math>, are less than or greater than <math>~r</math>, the integral gives, | |||
<div align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~F(r) </math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
- \frac{3G^'}{8r} \biggl( \frac{4\pi}{3}\rho_0 \biggr) \biggl\{ \biggl( R_2^3 - R_1^3 \biggr) + r^2 \biggl(R_2 - R_1\biggr) | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
| |||
</td> | |||
<td align="left"> | |||
<math>~ + | |||
r^3 \biggl[ \frac{1}{2} + \frac{1}{2}\biggl( \frac{R_1}{r} \biggr)^4 - \biggl( \frac{R_1}{r} \biggr)^2\biggr] | |||
\ln\biggl( \frac{R_1 + r}{|R_1 - r|} \biggr) | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
| |||
</td> | |||
<td align="left"> | |||
<math>~ - | |||
r^3 \biggl[ \frac{1}{2} + \frac{1}{2}\biggl( \frac{R_2}{r} \biggr)^4 - \biggl( \frac{R_2}{r} \biggr)^2\biggr] | |||
\ln\biggl( \frac{R_2 + r}{|R_2 - r|} \biggr) | |||
\biggr\} \, .</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</div> | |||
If the position, <math>~r</math>, is located outside of a uniform-density sphere, then <math>~R_1 = 0</math> and <math>~R_2 < r</math>, so the aggregate acceleration becomes, | |||
<div align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~F(r)_\mathrm{out} </math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
- \frac{3G^'}{8r} \biggl( \frac{4\pi}{3}\rho_0 \biggr) \biggl\{ R_2^3 + r^2 R_2 - | |||
r^3 \biggl[ \frac{1}{2} + \frac{1}{2}\biggl( \frac{R_2}{r} \biggr)^4 - \biggl( \frac{R_2}{r} \biggr)^2\biggr] | |||
\ln\biggl( \frac{r+R_2}{r- R_2} \biggr) | |||
\biggr\} | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
- \frac{G^' M(R_2)}{r} \biggl\{ | |||
1 - 3 \sum_{n=1}^{\infty} \biggl( \frac{R_2}{r} \biggr)^{2n} \biggl[(2n-1)(2n+1)(2n+3) \biggr]^{-1} | |||
\biggr\} \, , | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</div> | |||
where, <math>M(R_2) \equiv 4\pi \rho_0 R_2^3/3</math>. If | |||
=See Also= | =See Also= |
Revision as of 21:33, 4 March 2015
Force Exerted by a Uniform-Density Shell or Sphere
| Tiled Menu | Tables of Content | Banner Video | Tohline Home Page | |
Tohline's Derivations Circa 1983
If the force per unit mass exerted at the position, <math>~\vec{r}</math>, from a single point mass, <math>~m</math>, is given by,
<math>~\vec{F}</math> |
<math>~=</math> |
<math>~- \biggl( \frac{G^'m}{r} \biggr) \frac{\vec{r}}{r} \, ,</math> |
then the force per unit mass exerted at <math>~\vec{x}</math> by a continuous mass distribution, whose mass density is defined by the function <math>~\rho(\vec{x}^')</math>, is,
<math>~\vec{F}(\vec{x})</math> |
<math>~=</math> |
<math>~- \int G^' \rho(\vec{x}^') \biggl[ \frac{\vec{x}^' - \vec{x}}{| \vec{x}^' - \vec{x} |^2} \biggr] d^3x^' \, .</math> |
This central force can also be expressed in terms of the gradient of a scalar potential, <math>~\Phi(\vec{x})</math>, specifically,
<math>~\vec{F}(\vec{x})</math> |
<math>~=</math> |
<math>~- \vec\nabla\Phi(\vec{x}) \, ,</math> |
where,
<math>~\Phi(\vec{x}) </math> |
<math>~=</math> |
<math>~ \int G^' \rho(\vec{x}^') \ln | \vec{x}^' - \vec{x} | d^3x^' \, .</math> |
For a spherically symmetric mass distribution, <math>~\rho(r^')</math>, the magnitude of the force that is directed along the radial vector, <math>~\vec{r}^'</math>, and measured from the center of the mass distribution can be expressed as the following single integral over <math>~r^'</math>:
<math>~F(r) \equiv \vec{F}\cdot \frac{\vec{r}}{r} </math> |
<math>~=</math> |
<math>~ -2\pi G^' \int\limits_{R_1}^{R_2} \rho(r^') (r^')^2 \biggl[\frac{1}{r} + \frac{1}{2r^2 r^'} \biggl( r^2 - {r^'}^2 \biggr) \ln\biggl( \frac{r^' + r}{|r^' - r|} \biggr) \biggr] dr^' \, .</math> |
This integral can be completed analytically if <math>~\rho(r^') = \rho_0</math>, that is, for a uniform-density mass distribution. Independent of whether the limits of integration, <math>~R_1</math> and <math>~R_2</math>, are less than or greater than <math>~r</math>, the integral gives,
<math>~F(r) </math> |
<math>~=</math> |
<math>~ - \frac{3G^'}{8r} \biggl( \frac{4\pi}{3}\rho_0 \biggr) \biggl\{ \biggl( R_2^3 - R_1^3 \biggr) + r^2 \biggl(R_2 - R_1\biggr) </math> |
|
|
<math>~ + r^3 \biggl[ \frac{1}{2} + \frac{1}{2}\biggl( \frac{R_1}{r} \biggr)^4 - \biggl( \frac{R_1}{r} \biggr)^2\biggr] \ln\biggl( \frac{R_1 + r}{|R_1 - r|} \biggr) </math> |
|
|
<math>~ - r^3 \biggl[ \frac{1}{2} + \frac{1}{2}\biggl( \frac{R_2}{r} \biggr)^4 - \biggl( \frac{R_2}{r} \biggr)^2\biggr] \ln\biggl( \frac{R_2 + r}{|R_2 - r|} \biggr) \biggr\} \, .</math> |
If the position, <math>~r</math>, is located outside of a uniform-density sphere, then <math>~R_1 = 0</math> and <math>~R_2 < r</math>, so the aggregate acceleration becomes,
<math>~F(r)_\mathrm{out} </math> |
<math>~=</math> |
<math>~ - \frac{3G^'}{8r} \biggl( \frac{4\pi}{3}\rho_0 \biggr) \biggl\{ R_2^3 + r^2 R_2 - r^3 \biggl[ \frac{1}{2} + \frac{1}{2}\biggl( \frac{R_2}{r} \biggr)^4 - \biggl( \frac{R_2}{r} \biggr)^2\biggr] \ln\biggl( \frac{r+R_2}{r- R_2} \biggr) \biggr\} </math> |
|
<math>~=</math> |
<math>~ - \frac{G^' M(R_2)}{r} \biggl\{ 1 - 3 \sum_{n=1}^{\infty} \biggl( \frac{R_2}{r} \biggr)^{2n} \biggl[(2n-1)(2n+1)(2n+3) \biggr]^{-1} \biggr\} \, , </math> |
where, <math>M(R_2) \equiv 4\pi \rho_0 R_2^3/3</math>. If
See Also
- Stabilizing a Cold Disk with a 1/r Force Law
- Does Gravity Exhibit a 1/r Force on the Scale of Galaxies?
© 2014 - 2021 by Joel E. Tohline |