Difference between revisions of "User:Tohline/DarkMatter/UniformSphere"
(Begin chapter documenting derivations from early 1980s) |
(→Force Exerted by a Uniform-Density Shell or Sphere: Begin typing in notes from 1983) |
||
Line 4: | Line 4: | ||
{{LSU_HBook_header}} | {{LSU_HBook_header}} | ||
==Tohline's Derivations Circa 1983== | |||
If the force per unit mass exerted at the position, <math>~\vec{r}</math>, from a single point mass, <math>~m</math>, is given by, | |||
<div align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~\vec{F}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~- \biggl( \frac{G^'m}{r} \biggr) \frac{\vec{r}}{r} \, ,</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</div> | |||
then the force per unit mass exerted at <math>~\vec{x}</math> by a continuous mass distribution, whose mass density is defined by the function <math>~\rho(\vec{x}^')</math>, is, | |||
<div align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~\vec{F}(\vec{x})</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~- \int G^' \rho(\vec{x}^') \biggl[ \frac{\vec{x}^' - \vec{x}}{| \vec{x}^' - \vec{x} |^2} \biggr] d^3x^' \, .</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</div> | |||
This central force can also be expressed in terms of the gradient of a scalar potential, <math>~\Phi(\vec{x})</math>, specifically, | |||
<div align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~\vec{F}(\vec{x})</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~- \vec\nabla\Phi(\vec{x}) \, ,</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</div> | |||
where, | |||
<div align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~\Phi(\vec{x}) </math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ \int G^' \rho(\vec{x}^') \ln | \vec{x}^' - \vec{x} | d^3x^' \, .</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</div> | |||
=See Also= | =See Also= |
Revision as of 20:36, 4 March 2015
Force Exerted by a Uniform-Density Shell or Sphere
| Tiled Menu | Tables of Content | Banner Video | Tohline Home Page | |
Tohline's Derivations Circa 1983
If the force per unit mass exerted at the position, <math>~\vec{r}</math>, from a single point mass, <math>~m</math>, is given by,
<math>~\vec{F}</math> |
<math>~=</math> |
<math>~- \biggl( \frac{G^'m}{r} \biggr) \frac{\vec{r}}{r} \, ,</math> |
then the force per unit mass exerted at <math>~\vec{x}</math> by a continuous mass distribution, whose mass density is defined by the function <math>~\rho(\vec{x}^')</math>, is,
<math>~\vec{F}(\vec{x})</math> |
<math>~=</math> |
<math>~- \int G^' \rho(\vec{x}^') \biggl[ \frac{\vec{x}^' - \vec{x}}{| \vec{x}^' - \vec{x} |^2} \biggr] d^3x^' \, .</math> |
This central force can also be expressed in terms of the gradient of a scalar potential, <math>~\Phi(\vec{x})</math>, specifically,
<math>~\vec{F}(\vec{x})</math> |
<math>~=</math> |
<math>~- \vec\nabla\Phi(\vec{x}) \, ,</math> |
where,
<math>~\Phi(\vec{x}) </math> |
<math>~=</math> |
<math>~ \int G^' \rho(\vec{x}^') \ln | \vec{x}^' - \vec{x} | d^3x^' \, .</math> |
See Also
- Stabilizing a Cold Disk with a 1/r Force Law
- Does Gravity Exhibit a 1/r Force on the Scale of Galaxies?
© 2014 - 2021 by Joel E. Tohline |