Difference between revisions of "User:Tohline/Apps/HomologousCollapse"
(→Governing Equations: Working on raw generalization to arbitrary polytropic index) |
(→Homologously Collapsing Polytropic Spheres: Work through some details of generalized homologous collapse) |
||
Line 2: | Line 2: | ||
{{LSU_HBook_header}} | {{LSU_HBook_header}} | ||
==Review of Goldreich and Weber (1980)== | ==Review of Goldreich and Weber (1980)== | ||
In an [[User:Tohline/Apps/GoldreichWeber80#Homologously_Collapsing_Stellar_Cores|accompanying discussion]], we review the dynamical model that Peter Goldreich & Stephen Weber [http://adsabs.harvard.edu/abs/1980ApJ...238..991G (1980, ApJ, 238, 991)] developed to describe the near-homologous collapse of stellar cores that obey an equation of state having an adiabatic index, <math>~\gamma=4/3</math> — and polytropic index, <math>~n=3</math>. Here we examine whether or not this self-similar collapse model can be extended to configurations with arbitrary polytropic index. | |||
==Governing Equations== | ==Governing Equations== | ||
We begin with the set of [[User:Tohline/Apps/GoldreichWeber80#GoverningWithStreamFunction|principal governing equations already written in terms of a stream function]], as developed in the accompanying discussion of Goldreich & Weber's (1980) work. Specifically, the continuity equation, the Euler equation, and the Poisson equation become, respectively, | |||
<div align="center" id="GoverningWithStreamFunction"> | |||
<div align="center" | |||
<table border="1" align="center" cellpadding="10" width="55%"> | <table border="1" align="center" cellpadding="10" width="55%"> | ||
<tr><td align="center"> | <tr><td align="center"> | ||
Line 89: | Line 51: | ||
</td></tr> | </td></tr> | ||
</table> | </table> | ||
</div> | |||
Following [http://adsabs.harvard.edu/abs/1980ApJ...238..991G Goldreich & Weber (1980)], the normalization length scale, <math>~a</math>, that appears in this set of equations is the same length scale that is used in deriving the [[User:Tohline/SSC/Structure/Polytropes#Lane-Emden_equation|Lane-Emden equation]], namely, | |||
<div align="center"> | |||
<math> | |||
a \equiv \biggl[\frac{1}{4\pi G}~ \biggl( \frac{H_c}{\rho_c} \biggr)\biggr]^{1/2} \, , | |||
</math> | |||
</div> | |||
where the subscript, "c", denotes central values and, [[User:Tohline/SR#Barotropic_Structure|as presented in our introductory discussion of barotropic supplemental relations]], | |||
<div align="center"> | |||
<math>~H = (n+1) \kappa \rho^{1/n} \, .</math> | |||
</div> | |||
But, unlike Goldreich & Weber, we will leave the polytropic index unspecified. Inserting this equation of state expression into the definition of the normalization length scale leads to, | |||
<div align="center"> | |||
<math> | |||
a = \biggl[\frac{(n+1)\kappa}{4\pi G}\biggr]^{1/2} \rho_c^{-(n-1)/(2n)} \, . | |||
</math> | |||
</div> | |||
Again, following Goldreich & Weber, we allow the normalizing scale length to vary with time an adopt an ''accelerating'' coordinate system with a time-dependent dimensionless radial coordinate, | |||
<div align="center"> | |||
<math>~\vec\mathfrak{x} \equiv \frac{1}{a(t)} \vec{r} \, .</math> | |||
</div> | |||
(The spatial operators in the above set of principal governing equations exhibit a subscript, <math>~\mathfrak{x}</math>, indicating the adoption of this accelerating coordinate system.) This, in turn, reflects a time-varying central density; specifically, | |||
<div align="center"> | |||
<math> | |||
\rho_c = \biggl\{ \biggl[\frac{(n+1)\kappa}{4\pi G}\biggr]^{1/2} \frac{1}{a(t)} \biggr\}^{2n/(n-1)} \, . | |||
</math> | |||
</div> | </div> | ||
Next, we normalize the density by the central density, defining a dimensionless function, | |||
Next, | |||
<div align="center"> | <div align="center"> | ||
<math>f \equiv \biggl( \frac{\rho}{\rho_c} \biggr)^{1/ | <math>f \equiv \biggl( \frac{\rho}{\rho_c} \biggr)^{1/n} \, ,</math> | ||
</div> | </div> | ||
which is in line with the formulation and evaluation of the [[User:Tohline/SSC/Structure/Polytropes#Lane-Emden_equation|Lane-Emden equation]], where the primary ''dependent'' structural variable is the dimensionless polytropic enthalpy, | |||
<div align="center"> | <div align="center"> | ||
<math>\Theta_H \equiv \biggl( \frac{\rho}{\rho_c} \biggr)^{1/n} \, .</math> | <math>\Theta_H \equiv \biggl( \frac{\rho}{\rho_c} \biggr)^{1/n} \, .</math> | ||
</div> | </div> | ||
And we normalize both the gravitational potential and the enthalpy to the square of the central sound speed, | |||
<div align="center"> | <div align="center"> | ||
<math>c_s^2 = \frac{\gamma P_c}{\rho_c} = \frac{ | <math>c_s^2 = \frac{\gamma P_c}{\rho_c} = \frac{H_c}{n} = \biggl( \frac{n+1}{n} \biggr) \kappa \rho_c^{1/n} | ||
= \frac{ | = \biggl( \frac{n+1}{n} \biggr) \kappa | ||
\biggl\{ \biggl[\frac{(n+1)\kappa}{4\pi G}\biggr]^{1/2} \frac{1}{a(t)} \biggr\}^{2/(n-1)} | |||
= \, .</math> | |||
</div> | </div> | ||
<div align="center"> | <div align="center"> | ||
<table border="0" cellpadding="5" align="center"> | <table border="0" cellpadding="5" align="center"> | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~\ | <math>~c_s^2 = \frac{\gamma P_c}{\rho_c} = \frac{H_c}{n}</math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math>~ | <math>~=</math> | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~\biggl( \frac{n+1}{n} \biggr) \kappa \rho_c^{1/n}</math> | ||
</td> | </td> | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
| |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 135: | Line 120: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~\biggl | <math>~\biggl( \frac{n+1}{n} \biggr) \kappa | ||
\biggl\{ \biggl[\frac{(n+1)\kappa}{4\pi G}\biggr]^{1/2} \frac{1}{a(t)} \biggr\}^{2/(n-1)}</math> | |||
</td> | </td> | ||
</tr> | </tr> | ||
Line 147: | Line 133: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~\frac{1}{n} \biggl\{ \biggl[\frac{(n+1)^n \kappa^n}{4\pi G}\biggr] \frac{1}{a^2(t)} \biggr\}^{1/(n-1)} \, ,</math> | ||
</td> | </td> | ||
</tr> | </tr> | ||
</table> | |||
</div> | |||
giving, | |||
<div align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~\sigma</math> | |||
</td> | |||
<td align="center"> | |||
<math>~\equiv</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\frac{\Phi}{c_s^2} = n \biggl\{ \biggl[\frac{4\pi G}{(n+1)^n \kappa^n}\biggr] a^2(t) \biggr\}^{1/(n-1)} \Phi \, ,</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</div> | |||
and, | |||
<div align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~\frac{H}{c_s^2} </math> | |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 159: | Line 165: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~n \biggl( \frac{\rho}{\rho_c} \biggr)^{1/n} = nf \, .</math> | ||
</td> | </td> | ||
</tr> | </tr> | ||
Line 171: | Line 177: | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~\frac{d\ln f^ | <math>~\frac{d\ln f^n}{dt} </math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 190: | Line 196: | ||
<td align="right"> | <td align="right"> | ||
<math>~ | <math>~ | ||
\biggl | n \biggl\{ \biggl[\frac{4\pi G}{(n+1)^n \kappa^n}\biggr] a^2(t) \biggr\}^{1/(n-1)} | ||
\biggl[ \frac{d\psi}{dt} - \frac{1}{2a^2} ( \nabla_\mathfrak{x} \psi )^2 \biggr] | \biggl[ \frac{d\psi}{dt} - \frac{1}{2a^2} ( \nabla_\mathfrak{x} \psi )^2 \biggr] | ||
</math> | </math> | ||
Line 198: | Line 204: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ - | <math>~ - n f - \sigma \, ;</math> | ||
</td> | </td> | ||
</tr> | </tr> | ||
Line 206: | Line 212: | ||
and the Poisson equation becomes, | and the Poisson equation becomes, | ||
<div align="center"> | <div align="center"> | ||
<math>\nabla_\mathfrak{x}^2 \sigma = | <math>\nabla_\mathfrak{x}^2 \sigma = n f^n \, .</math> | ||
</div> | </div> | ||
Revision as of 23:28, 9 November 2014
Homologously Collapsing Polytropic Spheres
| Tiled Menu | Tables of Content | Banner Video | Tohline Home Page | |
Review of Goldreich and Weber (1980)
In an accompanying discussion, we review the dynamical model that Peter Goldreich & Stephen Weber (1980, ApJ, 238, 991) developed to describe the near-homologous collapse of stellar cores that obey an equation of state having an adiabatic index, <math>~\gamma=4/3</math> — and polytropic index, <math>~n=3</math>. Here we examine whether or not this self-similar collapse model can be extended to configurations with arbitrary polytropic index.
Governing Equations
We begin with the set of principal governing equations already written in terms of a stream function, as developed in the accompanying discussion of Goldreich & Weber's (1980) work. Specifically, the continuity equation, the Euler equation, and the Poisson equation become, respectively,
|
Following Goldreich & Weber (1980), the normalization length scale, <math>~a</math>, that appears in this set of equations is the same length scale that is used in deriving the Lane-Emden equation, namely,
<math> a \equiv \biggl[\frac{1}{4\pi G}~ \biggl( \frac{H_c}{\rho_c} \biggr)\biggr]^{1/2} \, , </math>
where the subscript, "c", denotes central values and, as presented in our introductory discussion of barotropic supplemental relations,
<math>~H = (n+1) \kappa \rho^{1/n} \, .</math>
But, unlike Goldreich & Weber, we will leave the polytropic index unspecified. Inserting this equation of state expression into the definition of the normalization length scale leads to,
<math> a = \biggl[\frac{(n+1)\kappa}{4\pi G}\biggr]^{1/2} \rho_c^{-(n-1)/(2n)} \, . </math>
Again, following Goldreich & Weber, we allow the normalizing scale length to vary with time an adopt an accelerating coordinate system with a time-dependent dimensionless radial coordinate,
<math>~\vec\mathfrak{x} \equiv \frac{1}{a(t)} \vec{r} \, .</math>
(The spatial operators in the above set of principal governing equations exhibit a subscript, <math>~\mathfrak{x}</math>, indicating the adoption of this accelerating coordinate system.) This, in turn, reflects a time-varying central density; specifically,
<math> \rho_c = \biggl\{ \biggl[\frac{(n+1)\kappa}{4\pi G}\biggr]^{1/2} \frac{1}{a(t)} \biggr\}^{2n/(n-1)} \, . </math>
Next, we normalize the density by the central density, defining a dimensionless function,
<math>f \equiv \biggl( \frac{\rho}{\rho_c} \biggr)^{1/n} \, ,</math>
which is in line with the formulation and evaluation of the Lane-Emden equation, where the primary dependent structural variable is the dimensionless polytropic enthalpy,
<math>\Theta_H \equiv \biggl( \frac{\rho}{\rho_c} \biggr)^{1/n} \, .</math>
And we normalize both the gravitational potential and the enthalpy to the square of the central sound speed,
<math>c_s^2 = \frac{\gamma P_c}{\rho_c} = \frac{H_c}{n} = \biggl( \frac{n+1}{n} \biggr) \kappa \rho_c^{1/n} = \biggl( \frac{n+1}{n} \biggr) \kappa \biggl\{ \biggl[\frac{(n+1)\kappa}{4\pi G}\biggr]^{1/2} \frac{1}{a(t)} \biggr\}^{2/(n-1)} = \, .</math>
<math>~c_s^2 = \frac{\gamma P_c}{\rho_c} = \frac{H_c}{n}</math> |
<math>~=</math> |
<math>~\biggl( \frac{n+1}{n} \biggr) \kappa \rho_c^{1/n}</math> |
|
<math>~=</math> |
<math>~\biggl( \frac{n+1}{n} \biggr) \kappa \biggl\{ \biggl[\frac{(n+1)\kappa}{4\pi G}\biggr]^{1/2} \frac{1}{a(t)} \biggr\}^{2/(n-1)}</math> |
|
<math>~=</math> |
<math>~\frac{1}{n} \biggl\{ \biggl[\frac{(n+1)^n \kappa^n}{4\pi G}\biggr] \frac{1}{a^2(t)} \biggr\}^{1/(n-1)} \, ,</math> |
giving,
<math>~\sigma</math> |
<math>~\equiv</math> |
<math>~\frac{\Phi}{c_s^2} = n \biggl\{ \biggl[\frac{4\pi G}{(n+1)^n \kappa^n}\biggr] a^2(t) \biggr\}^{1/(n-1)} \Phi \, ,</math> |
and,
<math>~\frac{H}{c_s^2} </math> |
<math>~=</math> |
<math>~n \biggl( \frac{\rho}{\rho_c} \biggr)^{1/n} = nf \, .</math> |
With these additional scalings, the continuity equation becomes,
<math>~\frac{d\ln f^n}{dt} </math> |
<math>~=</math> |
<math>~-~ a^{-2} \nabla_\mathfrak{x}^2 \psi \, ,</math> |
the Euler equation becomes,
<math>~ n \biggl\{ \biggl[\frac{4\pi G}{(n+1)^n \kappa^n}\biggr] a^2(t) \biggr\}^{1/(n-1)} \biggl[ \frac{d\psi}{dt} - \frac{1}{2a^2} ( \nabla_\mathfrak{x} \psi )^2 \biggr] </math> |
<math>~=</math> |
<math>~ - n f - \sigma \, ;</math> |
and the Poisson equation becomes,
<math>\nabla_\mathfrak{x}^2 \sigma = n f^n \, .</math>
© 2014 - 2021 by Joel E. Tohline |