Difference between revisions of "User:Tohline/SSC/VirialEquilibrium/UniformDensity"

From VistrailsWiki
Jump to navigation Jump to search
(→‎Uniform-Density Sphere: Clarify solution and add to discussion)
(→‎Adiabatic Evolution of an Isolated Sphere: Begin comparison with detailed force-balance solution)
Line 163: Line 163:


===Discussion===
===Discussion===
This derived solution will look more familiar if, instead of <math>~K</math>, we express the solution in terms of the central pressure,
<div align="center">
<math>P_c = K\rho_0^{\gamma_g} \, ,</math>
</div>
where, for this uniform-density sphere, <math>~\rho_0 = 3M_\mathrm{tot}/(4\pi R_\mathrm{eq}^3)</math>.  Hence,
<div align="center">
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~K</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>P_c \biggl( \frac{4\pi R_\mathrm{eq}^3}{3M_\mathrm{tot}} \biggr)^{\gamma_g} \, ,</math>
  </td>
</tr>
</table>
</div>
and the solution takes the form,
<div align="center">
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>R_\mathrm{eq}^{3\gamma_g - 4}</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>5\biggl( \frac{4\pi}{3} \biggr) \biggr(\frac{P_c R_\mathrm{eq}^{3\gamma_g}}{GM^2_\mathrm{tot}}\biggr)
\cdot \frac{\mathfrak{f}_A}{\mathfrak{f}_W} </math>
  </td>
</tr>
<tr>
  <td align="right">
<math>\Rightarrow ~~~~ R_\mathrm{eq}^{4} </math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>\biggl( \frac{3}{20\pi} \biggr) \biggr(\frac{GM^2_\mathrm{tot}}{P_c}\biggr)
\cdot \frac{\mathfrak{f}_W}{\mathfrak{f}_A} \, ,</math>
  </td>
</tr>
</table>
</div>
or, solving for the central pressure,
<div align="center">
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~P_c</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>\biggl( \frac{3}{20\pi} \cdot \frac{\mathfrak{f}_W}{\mathfrak{f}_A} \biggr) \frac{GM^2_\mathrm{tot}}{R_\mathrm{eq}^{4} }
\, .</math>
  </td>
</tr>
</table>
</div>
This should be compared with our [[User:Tohline/SSC/Structure/UniformDensity#Summary|detailed force-balance solution]] of the interior structure of an isolated, nonrotating, uniform-density sphere, which gives the precise expression,
<div align="center">
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~P_c</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>\biggl( \frac{3}{8\pi}  \biggr) \frac{GM^2_\mathrm{tot}}{R_\mathrm{eq}^{4} }
\, .</math>
  </td>
</tr>
</table>
</div>
The expressions are identical, except that the leading numerical coefficients differ by a factor of <math>~(5\mathfrak{f}_A/2\mathfrak{f}_W)</math>.
Accordingly, the equilibrium mass-radius relationship for adiabatic configurations of a given specific entropy is,
Accordingly, the equilibrium mass-radius relationship for adiabatic configurations of a given specific entropy is,
<div align="center">
<div align="center">

Revision as of 21:28, 7 May 2014

Uniform-Density Sphere

Whitworth's (1981) Isothermal Free-Energy Surface
|   Tiled Menu   |   Tables of Content   |  Banner Video   |  Tohline Home Page   |

Review

In an introductory discussion of the virial equilibrium structure of spherically symmetric configurations — see especially the section titled, Energy Extrema — we deduced that a system's equilibrium radius, <math>~R_\mathrm{eq}</math>, measured relative to a reference length scale, <math>~R_0</math>, i.e., the dimensionless equilibrium radius,

<math>~\chi_\mathrm{eq} \equiv \frac{R_\mathrm{eq}}{R_0} \, ,</math>

is given by the root(s) of the following equation:

<math> 2C \chi^{-2} + ~ (1-\delta_{1\gamma_g})~3(\gamma_g-1) B\chi^{3 -3\gamma_g} +~ \delta_{1\gamma_g} B_I ~-~A\chi^{-1} -~ 3D\chi^3 = 0 \, , </math>

where the definitions of the various coefficients are,

<math>~A</math>

<math>~\equiv</math>

<math>\frac{3}{5} \frac{GM_\mathrm{tot} ^2}{R_0} \cdot \mathfrak{f}_W \, ,</math>

<math>~B</math>

<math>~\equiv</math>

<math> \frac{K M_\mathrm{tot} }{(\gamma_g-1)} \biggl( \frac{3M_\mathrm{tot} }{4\pi R_0^3} \biggr)^{\gamma_g - 1} \cdot \mathfrak{f}_A = \frac{\bar{c_s}^2 M_\mathrm{tot} }{(\gamma_g - 1)} \cdot \mathfrak{f}_A \, , </math>

<math>~B_I</math>

<math>~\equiv</math>

<math> 3c_s^2 M_\mathrm{tot} \cdot \mathfrak{f}_M \, , </math>

<math>~C</math>

<math>~\equiv</math>

<math> \frac{5J^2}{4M_\mathrm{tot} R_0^2} \cdot \mathfrak{f}_T \, , </math>

<math>~D</math>

<math>~\equiv</math>

<math> \frac{4}{3} \pi R_0^3 P_e \, . </math>

Once the pressure exerted by the external medium (<math>~P_e</math>), and the configuration's mass (<math>~M_\mathrm{tot}</math>), angular momentum (<math>~J</math>), and specific entropy (via <math>~K</math>) — or, in the isothermal case, sound speed (<math>~c_s</math>) — have been specified, the values of all of the coefficients are known and <math>~\chi_\mathrm{eq}</math> can be determined.

Adiabatic Evolution of an Isolated Sphere

Here we seek to determine the equilibrium radius of a non-rotating configuration (<math>~J = 0</math>) that undergoes adiabatic compression/expansion (<math>\delta_{1\gamma_g} =~0</math>) and that is not confined by an external medium (<math>P_e = 0~</math>).

Solution

In this case, the statement of virial equilibrium is simplified considerably. Specifically, <math>~\chi_\mathrm{eq}</math> is given by the root(s) of the equation,

<math>~A\chi_\mathrm{eq}^{-1} </math>

<math>~=</math>

<math>~3(\gamma_g-1) B\chi_\mathrm{eq}^{3 -3\gamma_g} </math>

<math>\Rightarrow ~~~~~\chi_\mathrm{eq}^{3\gamma_g-4} </math>

<math>~=</math>

<math>~\frac{3(\gamma_g-1) B}{A} </math>

 

<math>~=</math>

<math> \biggl[ 3K M_\mathrm{tot} \biggl( \frac{3M_\mathrm{tot} }{4\pi R_0^3} \biggr)^{\gamma_g - 1} \cdot \mathfrak{f}_A \biggr] \biggl[ \frac{3}{5} \frac{GM_\mathrm{tot} ^2}{R_0} \cdot \mathfrak{f}_W \biggr] ^{-1} </math>

 

<math>~=</math>

<math> \biggl( \frac{1}{R_0} \biggr)^{3\gamma_g-4} \biggl[ 5\biggl( \frac{3}{4\pi} \biggr)^{\gamma_g-1} \biggr(\frac{K}{G}\biggr) M^{(\gamma_g-2)} \cdot \frac{\mathfrak{f}_A}{\mathfrak{f}_W} \biggr] \, . </math>

In other words,

<math> R_\mathrm{eq} = \biggl[ 5\biggl( \frac{3}{4\pi} \biggr)^{\gamma_g-1} \biggr(\frac{K}{G}\biggr) M^{(\gamma_g-2)} \cdot \frac{\mathfrak{f}_A}{\mathfrak{f}_W} \biggr]^{1/(3\gamma_g-4)} \, . </math>

Discussion

This derived solution will look more familiar if, instead of <math>~K</math>, we express the solution in terms of the central pressure,

<math>P_c = K\rho_0^{\gamma_g} \, ,</math>

where, for this uniform-density sphere, <math>~\rho_0 = 3M_\mathrm{tot}/(4\pi R_\mathrm{eq}^3)</math>. Hence,

<math>~K</math>

<math>~=</math>

<math>P_c \biggl( \frac{4\pi R_\mathrm{eq}^3}{3M_\mathrm{tot}} \biggr)^{\gamma_g} \, ,</math>

and the solution takes the form,

<math>R_\mathrm{eq}^{3\gamma_g - 4}</math>

<math>~=</math>

<math>5\biggl( \frac{4\pi}{3} \biggr) \biggr(\frac{P_c R_\mathrm{eq}^{3\gamma_g}}{GM^2_\mathrm{tot}}\biggr) \cdot \frac{\mathfrak{f}_A}{\mathfrak{f}_W} </math>

<math>\Rightarrow ~~~~ R_\mathrm{eq}^{4} </math>

<math>~=</math>

<math>\biggl( \frac{3}{20\pi} \biggr) \biggr(\frac{GM^2_\mathrm{tot}}{P_c}\biggr) \cdot \frac{\mathfrak{f}_W}{\mathfrak{f}_A} \, ,</math>

or, solving for the central pressure,

<math>~P_c</math>

<math>~=</math>

<math>\biggl( \frac{3}{20\pi} \cdot \frac{\mathfrak{f}_W}{\mathfrak{f}_A} \biggr) \frac{GM^2_\mathrm{tot}}{R_\mathrm{eq}^{4} } \, .</math>

This should be compared with our detailed force-balance solution of the interior structure of an isolated, nonrotating, uniform-density sphere, which gives the precise expression,

<math>~P_c</math>

<math>~=</math>

<math>\biggl( \frac{3}{8\pi} \biggr) \frac{GM^2_\mathrm{tot}}{R_\mathrm{eq}^{4} } \, .</math>

The expressions are identical, except that the leading numerical coefficients differ by a factor of <math>~(5\mathfrak{f}_A/2\mathfrak{f}_W)</math>.

Accordingly, the equilibrium mass-radius relationship for adiabatic configurations of a given specific entropy is,

<math> M^{(\gamma_g - 2)} \propto R_\mathrm{eq}^{(3\gamma_g -4)} \, . </math>

Notice that, for <math>\gamma_g=2</math>, the equilibrium radius depends only on the specific entropy of the gas and is independent of the configuration's mass. Conversely, notice that, for <math>\gamma_g = 4/3</math>, the mass of the configuration is independent of the radius. For <math>\gamma_g</math> > <math> 2</math> or <math>\gamma_g </math>< <math>4/3</math>, configurations with larger mass (but the same specific entropy) have larger equilibrium radii. However, for <math>\gamma_g</math> in the range, <math>2</math> > <math>\gamma_g </math> > <math>4/3</math>, configurations with larger mass have smaller equilibrium radii. Note that the result obtained for the isothermal configuration could have been obtained by setting <math>\gamma_g = 1</math> in this adiabatic solution, because <math>K = c_s^2</math> when <math>\gamma_g = 1</math>.

It is also instructive to write the coefficient <math>B</math> in terms of the average sound speed as defined above. In this case,

<math> R_\mathrm{eq} = R_0 \biggl[ \frac{GM}{5 \bar{c_s}^2 R_0} \biggr]^{1/(4- 3\gamma_g)} \, , </math>

so the equilibrium radius of an isolated, nonrotating, uniform density, adiabatic sphere is,

<math> R_\mathrm{eq} = R_0 = \frac{GM}{5 \bar{c_s}^2 } \, . </math>


Whitworth's (1981) Isothermal Free-Energy Surface

© 2014 - 2021 by Joel E. Tohline
|   H_Book Home   |   YouTube   |
Appendices: | Equations | Variables | References | Ramblings | Images | myphys.lsu | ADS |
Recommended citation:   Tohline, Joel E. (2021), The Structure, Stability, & Dynamics of Self-Gravitating Fluids, a (MediaWiki-based) Vistrails.org publication, https://www.vistrails.org/index.php/User:Tohline/citation