Difference between revisions of "SciVisFall2007/Schedule"
Line 81: | Line 81: | ||
Further Reading: There is no required reading for this lecture. For those interested in more depth, the following books are very useful: | Further Reading: There is no required reading for this lecture. For those interested in more depth, the following books are very useful: | ||
* The Elements of Graphing Data. William S. Cleveland, Hobart Press, 2nd Edition, 1994. | |||
* Visualizing Data. William S. Cleveland, Hobart Press, 1993. | |||
* The Visual Display of Quantitative Information. Edward R. Tufte, Graphics Press, 2001. | |||
* Visual Explanations: Images and Quantities, Evidence and Narrative. Edward R. Tufte, Graphics Press, 2997. | |||
== 9/6: Elementary Plotting Techniques == | == 9/6: Elementary Plotting Techniques == |
Revision as of 19:58, 4 September 2007
8/21: Introduction to visualization
Lecturer: Claudio
Topics: Scientific Visualization
Notes: lec01-notes.pdf
Slides: lec01.pdf
Animations: explosion_640x480-5.mov, fig7.mov, fig8.mov, fig9.mov, SevereTstorm.mov
Further reading:
Visualizing Spatial and Temporal Variability in Coastal Observatories, W. Herrera-Jimenez, W. Correa, C. Silva, and A. Baptista, IEEE Visualization 2003.
8/23: The visualization pipeline
Lecturer: Claudio
Topics: Procedural vs. Dataflow programming; Using Dataflow for the Vis Pipeline; Dataflow programming with VTK; Dataflow programming with VisTrails; python.
Notes: lec02-notes.pdf
Slides: lec02.pdf
Further reading:
Provenance for Visualizations: Reproducibility and Beyond, C. Silva, J. Freire, and S. Callahan, IEEE Computing in Science and Engineering, to appear.
8/28: Modeling Data for Visualization
Lecturer: Carlos
Topics: Discrete vs continous data; Sampling and interpolation; Point vs triangulated data; Meshing data types; Regular vs irregular data; Tabular data; Vector and tensor fields
Notes: TBA
Slides: .ppt file
Further reading:
There is no required reading for this lecture. The notes will be available shortly. The following papers are there for people that are looking to get more advanced material that will not be covered in class.
Interpolation
Geodesic-loxodromes... This is the fancy interpolation for diffusion tensors I mentioned in class.
Bernstein polynomials These are the polynomials used for cubic Bezier curves that I mentioned in class.
Separability
Extensions of the Zwart-Powell Box spline... This is a recent paper that shows a class of trivariate reconstruction techniques that are not separable.
Tensors
Visualization and Analysis of Diffusion Tensor Fields Gordon Kindlmann's PhD. thesis, with everything you ever wanted to know about DTI. Section 2.1 has a good primer in tensor algebra.
8/30: Modeling Data for Visualization
Lecturer: Carlos
Topics: Geometry Processing: Reconstruction and meshing; Simplification; Smoothing; Other Filtering algorithms
Notes: TBA
Slides: .ppt file These slides include simplificatin algorithms, which I'll talk about next week.
Animations: TBA
Further reading: TBA
9/4: Elementary Plotting Techniques
Lecturer: Steve
Topics: Principles of Graph Construction
Slides: Plotting1.pdf
Further Reading: There is no required reading for this lecture. For those interested in more depth, the following books are very useful:
- The Elements of Graphing Data. William S. Cleveland, Hobart Press, 2nd Edition, 1994.
- Visualizing Data. William S. Cleveland, Hobart Press, 1993.
- The Visual Display of Quantitative Information. Edward R. Tufte, Graphics Press, 2001.
- Visual Explanations: Images and Quantities, Evidence and Narrative. Edward R. Tufte, Graphics Press, 2997.
9/6: Elementary Plotting Techniques
Lecturer: Steve
Topics: Multivariable and multimodal; Histograms; Autocorrelation plots; Scatter plots; Tukey-bars (uncertainty)
9/11: Color and Human Perception
Lecturer: Claudio
Topics: Human vision system; Optical illusions
9/13: Color and Human Perception
Lecturer: Claudio
Topics: Color Science; Color spaces; Color Blindness; Color maps; Tone mapping
Further reading:
How Not to Lie with Visualization. B. Rogowitz and L. Treinish. Computers in Physics, 10, n.3, pp. 268-274, May/June 1996.
A Rule-based Tool for Assisting Colormap Selection. L. Bergman, B. Rogowitz and L. Treinish. IEEE Visualization '95, pp. 118-125, October 1995.
9/18: 2D Visualization Techniques
Lecturer: Carlos
Topics: 2-D contours, marching quads, marching tris; Color mapping; height fields; NPR
9/20: 2D Visualization Techniques
Lecturer: Carlos
Topics: 2-D vector fields, div, grad, curl in 2D; Steady vs Unsteady flows; Glyphs; 2-D streamlines; 2-D streaklines
9/25: Volume Vis
Lecturer: Claudio
Topics: Slicing; Contours; Marching algorithms
9/27: Volume Vis
Lecturer: Claudio
Topics: Accelerating structures; High-quality contours
10/2: Volume Vis
Lecturer: Steve
Topics: Direct volume rendering; optical models; Ray casting; Texture-based; Acceleration structures
10/4: Volume Vis
Lecturer: Steve
Topics: Unstructured techniques; ray casting; pt; zsweep; havs
10/9: Fall break
10/11: Fall break
10/16: Volume Vis
Lecturer: Steve
Topics: Transfer functions; function statistics (histograms); multi-dimensional; contour spectrum
10/18: Midterm 1
10/23: Vector and Tensor Visualization
Lecturer: Carlos
Topics: Differential Geometry in 3D: Div, Grad, Curl; Revisit Unsteady vs. Steady flows; Streamribbons, surfaces, tubes, streamlines and streaklines
10/25: Vector and Tensor Visualization
Lecturer: Claudio
Topics: LIC; hyper LIC; Topology-based techniques
10/30: Simplification Techniques
Guest lecture: Yuan Zhou
11/1: Cosmology and EEG analysis
Guest lecture: Erik Anderson
11/6: Vector and Tensor Vis
Lecturer: Carlos
Topics: Glyphs; DTI techniques
11/8: Aesthetic Issues in Vis
Lecturer: Claudio
Topics: Volume Illustration and NPR
11/13: Aesthetic Issues in Vis
Lecturer: Steve
Topics: Tufte
11/15: Aesthetic Issues in Vis
Lecturer: Steve
Topics: Tufte
11/20: Information Visualization
Lecturer: Carlos
Topics: Parallel coordinates; Graph visualization
11/22: Thanksgiving
11/27: Information Visualization
Lecturer: Claudio
Topics: Hierarchical data vis; brushing; sizing text