Difference between revisions of "User:Tohline/SSC/Structure/LimitingMasses"

From VistrailsWiki
Jump to navigation Jump to search
(→‎Summary of Analytic Results: modify figure titlr)
(Move title image)
Line 1: Line 1:
__FORCETOC__
__FORCETOC__
=Mass Upper Limits=
{{LSU_HBook_header}}
{{LSU_HBook_header}}
=Mass Upper Limits=
==Virial Equilibrium==
==Virial Equilibrium==
By examining the [[User:Tohline/SphericallySymmetricConfigurations/Virial#P-V_Diagram|virial equilibrium of nonrotating, spherically symmetric configurations that are embedded in an external medium]] of pressure <math>P_e</math>, one can begin to appreciate that there is a mass above which no equilibrium exists if the effective adiabatic exponent of the gas is <math>\gamma_g < 4/3</math>.  Assuming uniform density and uniform specific entropy configurations for simplicity, there is an analytic expression for this limiting mass and for the equilibrium radius of that limiting configuration.  Specifically,
By examining the [[User:Tohline/SphericallySymmetricConfigurations/Virial#P-V_Diagram|virial equilibrium of nonrotating, spherically symmetric configurations that are embedded in an external medium]] of pressure <math>P_e</math>, one can begin to appreciate that there is a mass above which no equilibrium exists if the effective adiabatic exponent of the gas is <math>\gamma_g < 4/3</math>.  Assuming uniform density and uniform specific entropy configurations for simplicity, there is an analytic expression for this limiting mass and for the equilibrium radius of that limiting configuration.  Specifically,
Line 178: Line 177:
</math>
</math>
</div>
</div>




=Related Wikipedia Discussions=
=Related Wikipedia Discussions=
* [http://en.wikipedia.org/wiki/Bonnor-Ebert)mass Bonnor-Ebert Mass]
* [http://en.wikipedia.org/wiki/Bonnor-Ebert)mass Bonnor-Ebert Mass]


{{LSU_HBook_footer}}
{{LSU_HBook_footer}}

Revision as of 00:27, 5 November 2012

Mass Upper Limits

Whitworth's (1981) Isothermal Free-Energy Surface
|   Tiled Menu   |   Tables of Content   |  Banner Video   |  Tohline Home Page   |

Virial Equilibrium

By examining the virial equilibrium of nonrotating, spherically symmetric configurations that are embedded in an external medium of pressure <math>P_e</math>, one can begin to appreciate that there is a mass above which no equilibrium exists if the effective adiabatic exponent of the gas is <math>\gamma_g < 4/3</math>. Assuming uniform density and uniform specific entropy configurations for simplicity, there is an analytic expression for this limiting mass and for the equilibrium radius of that limiting configuration. Specifically,

<math> M_\mathrm{max}^2 = \frac{3\cdot 5}{2^2 \pi} \biggl(\frac{4}{3\gamma_g} - 1 \biggr) \biggl[ \frac{3 \gamma_g}{4} \biggr] ^{4/(4-3\gamma_g)} \biggl[ \frac{\bar{c_s}^8}{G^3 P_e} \biggr] \, , </math>

and,

<math> R_\mathrm{eq}^2 = \frac{1}{5^2} \biggl[ \frac{4}{3\gamma_g} \biggr]^{2/(4-3\gamma_g)} \biggl[ \frac{GM_\mathrm{max}}{\bar{c_s}^2 } \biggr]^2 = \frac{3}{2^2 \cdot 5\pi} \biggl[ \frac{3\gamma_g}{4} \biggr]^{2/(4-3\gamma_g)} \biggl( \frac{4}{3\gamma_g} - 1 \biggr) \biggl[ \frac{\bar{c_s}^4 }{GP_e} \biggr] \, . </math>

Polytropes Embedded in an External Medium

Polytropes embedded in an external medium

Summary of Analytic Results

Example:   Specify <math>c_s</math>, <math>P_e</math> and <math>n</math> (or <math>\eta = 1+1/n)</math>

<math>~n</math>

<math>\eta</math>

<math>M_\mathrm{max}</math>

<math>R_\mathrm{eq}</math>

<math>\alpha_\mathrm{virial}</math>

<math>\alpha_\mathrm{DHB}</math>

<math>\mathrm{scale}</math>

<math>\alpha_\mathrm{virial}</math>

<math>\alpha_\mathrm{DHB}</math>

<math>\mathrm{scale}</math>

<math>\infty</math>

1

<math>\biggr(\frac{3^4 \cdot 5^3}{2^{10} \pi}\biggr)^{1/2} </math>
 
<math> \approx 1.77408</math>

--

<math>\biggl[ \frac{c_s^8}{G^3 P_e}\biggr]^{1/2}</math>

<math>\biggl(\frac{3^2 \cdot 5}{2^6\pi} \bigg)^{1/2}</math>
 
<math> \approx 0.47309</math>

--

<math>\biggl( \frac{c_s^4}{GP_e} \biggr)^{1/2}</math>

5

6/5

<math>\biggl( \frac{3^{19}}{2^{12}\cdot 5^9 \pi} \biggr)^{1/2} </math>
 
<math> \approx 0.21505</math>

<math>\biggl( \frac{1}{2} \biggr)^{3/10} \biggl( \frac{3^7}{2^8 \pi} \biggr)^{1/2} </math>
 
<math> \approx 1.33943</math>

<math>\biggl[ \frac{\bar{c_s}^8}{G^3 P_e}\biggr]^{1/2}</math>

<math>\frac{3^{9}}{2^{7}\cdot 5^{6} \pi} </math>
 
<math> \approx 0.0031326</math>

--

<math>\biggl( \frac{\bar{c_s}^4}{GP_e} \biggr)^{1/2}</math>

Bonnor-Ebert Limiting Mass

Here we will refer to the original works of Ebert (1955, ZA, 37, 217) and Bonnor (1956, MNRAS, 116, 351) .

In his study of the "global gravitational stability [of] one-dimensional polytropes," Whitworth (1981, MNRAS, 195, 967) normalizes (or "references") various derived mathematical expressions for configuration radii, <math>R</math>, and for the pressure exerted by an external bounding medium, <math>P_\mathrm{ex}</math>, to quantities he refers to as, respectively, <math>R_\mathrm{rf}</math> and <math>P_\mathrm{rf}</math>. The paragraph from his paper in which these two reference quantities are defined is shown here:

Whitworth (1981, MNRAS, 195, 967)

In order to map Whitworth's terminology to ours, we note, first, that he uses <math>M_0</math> to represent the spherical configuration's total mass, which we refer to simply as <math>M</math>; and his parameter <math>\eta</math> is related to our <math>~n</math> via the relation,

<math>\eta = 1 + \frac{1}{n} \, .</math>

Hence, Whitworth writes the polytropic equation of state as,

<math>P = K_\eta \rho^\eta \, ,</math>

whereas, using our standard notation, this same key relation is written as,

<math>~P = K_\mathrm{n} \rho^{1+1/n}</math> ;

and his parameter <math>K_\eta</math> is identical to our <math>~K_\mathrm{n}</math>.

According to the second (bottom) expression identified by the red outlined box drawn above,

<math> P_\mathrm{rf} = \frac{3^4 5^3}{2^{10} \pi} \biggl( \frac{K_1^4}{G^3 M^2} \biggr) \, , </math>

and inverting the expression inside the green outlined box gives,

<math> K_1 = \biggl[ K_n (4 P_\mathrm{rf})^{\eta - 1} \biggr]^{1/\eta} \, . </math>

Hence,

<math> P_\mathrm{rf} = \frac{3^4 5^3}{2^{10} \pi} \biggl( \frac{1}{G^3 M^2} \biggr)\biggl[ K_n (4 P_\mathrm{rf})^{\eta - 1} \biggr]^{4/\eta} \, , </math>

or, gathering all factors of <math>P_\mathrm{rf}</math> to the left-hand side,

<math> P_\mathrm{rf}^{(4-3\eta)} = 2^{-2(4+\eta)} \biggl( \frac{3^4 5^3}{\pi} \biggr)^\eta \biggl[ \frac{K_n^4}{G^{3\eta} M^{2\eta}} \biggr] \, . </math>

Analogously, according to the first (top) expression identified inside the red outlined box,

<math> R_\mathrm{rf} = \frac{2^2 GM}{3\cdot 5 K_1} = 2^{2/\eta} \biggl( \frac{GM}{3\cdot 5}\biggr) K_n^{-1/\eta} P_\mathrm{rf}^{(1-\eta)/\eta} ~~~~\Rightarrow~~~~ R_\mathrm{rf}^\eta = \frac{2^{2}}{K_n} \biggl( \frac{GM}{3\cdot 5}\biggr)^\eta P_\mathrm{rf}^{(1-\eta)} \, . </math>


Related Wikipedia Discussions

Whitworth's (1981) Isothermal Free-Energy Surface

© 2014 - 2021 by Joel E. Tohline
|   H_Book Home   |   YouTube   |
Appendices: | Equations | Variables | References | Ramblings | Images | myphys.lsu | ADS |
Recommended citation:   Tohline, Joel E. (2021), The Structure, Stability, & Dynamics of Self-Gravitating Fluids, a (MediaWiki-based) Vistrails.org publication, https://www.vistrails.org/index.php/User:Tohline/citation