Difference between revisions of "User:Tohline/Appendix/Ramblings/T3CharacteristicVector"
(Begin investigation of the Characteristic Vector in the specific context of T3 coordinates) |
(Two views of Equation of Motion) |
||
Line 165: | Line 165: | ||
</tr> | </tr> | ||
<!-- | |||
<tr> | <tr> | ||
<td align="center"> | <td align="center"> | ||
Line 204: | Line 205: | ||
</td> | </td> | ||
</tr> | </tr> | ||
--> | |||
</table> | </table> | ||
==Two Views of Equation of Motion== | |||
===Christoffel Symbol Formalism=== | |||
The second component of the equation of motion can be obtained by setting <math>i = 2</math> and <math>C_i = 1</math> in '''[[User:Jaycall/KillingVectorApproach#CV.01|Equation CV.01]]''', specifically, | |||
<table border="1" align="center" cellpadding="5"> | |||
<tr> | |||
<td align="right"> | |||
<math> | |||
\frac{d(h_2^2 \dot{\lambda}_2)}{dt} | |||
</math> | |||
</td> | |||
<td align="center"> | |||
<math>=</math> | |||
</td> | |||
<td align="left"> | |||
<math> | |||
{h_k}^2 \Gamma^k_{2j} \dot{\lambda}_j \dot{\lambda}_k | |||
</math> | |||
</td> | |||
<td align="left"> | |||
<math> | |||
= {h_1}^2 \dot{\lambda}_1 \biggr[ \Gamma^1_{21} \dot{\lambda}_1 + \Gamma^1_{22} \dot{\lambda}_2 \biggl] + | |||
{h_2}^2 \dot{\lambda}_2 \biggr[ \Gamma^2_{21} \dot{\lambda}_1 + \Gamma^2_{22} \dot{\lambda}_2 \biggl] | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>=</math> | |||
</td> | |||
<td align="left" colspan="2"> | |||
<math> | |||
{h_1}^2 \dot{\lambda}_1 \biggr[ \biggl( \frac{1}{h_1} \frac{\partial h_1}{\partial\lambda_2} \biggr) \dot{\lambda}_1 - \biggl( \frac{h_2}{h_1^2} \frac{\partial h_2}{\partial\lambda_1} \biggr) \dot{\lambda}_2 \biggl] + | |||
{h_2}^2 \dot{\lambda}_2 \biggr[ \biggl( \frac{1}{h_2} \frac{\partial h_2}{\partial\lambda_1} \biggr) \dot{\lambda}_1 + \biggl( \frac{1}{h_2} \frac{\partial h_2}{\partial\lambda_2} \biggr) \dot{\lambda}_2 \biggl] | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>=</math> | |||
</td> | |||
<td align="left" colspan="2"> | |||
<math> | |||
\biggl( h_1 \frac{\partial h_1}{\partial\lambda_2} \biggr) \dot{\lambda}_1^2 + | |||
\biggl( h_2 \frac{\partial h_2}{\partial\lambda_2} \biggr) \dot{\lambda}_2^2 | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
<br /> | <br /> | ||
{{LSU_HBook_footer}} | {{LSU_HBook_footer}} |
Revision as of 23:06, 6 June 2010
| Tiled Menu | Tables of Content | Banner Video | Tohline Home Page | |
Characteristic Vector for T3 Coordinates
Let's apply Jay's Characteristic Vector approach to Joel's T3 Coordinate System.
Brute Force Manipulations
Starting from Equation CV.02, and plugging in expressions for various logarithmic derivatives of the T3 scale factors, we obtain,
|
<math> \frac{\dot{C}_2}{C_2} \biggl(\frac{d \ln{\lambda}_2}{dt}\biggr)^{-1} </math> |
<math> = </math> |
<math> \biggl(\frac{h_1 \dot{\lambda}_1}{h_2 \dot{\lambda}_2}\biggr)^2 \frac{\partial \ln h_1}{\partial\ln\lambda_2} + \frac{\partial \ln h_2}{\partial \ln\lambda_2} </math> |
|
|
<math> = </math> |
<math> \biggl(\frac{h_1 \dot{\lambda}_1}{h_2 \dot{\lambda}_2}\biggr)^2 \biggl( \frac{q h_1 h_2 \lambda_2}{\lambda_1 } \biggr)^2 - ( qh_1^2 )^2 </math> |
|
|
<math> = </math> |
<math> \biggl[ (h_1 \dot{\lambda}_1)^2 ( q h_1 h_2 \lambda_2 )^2 - (h_2 \dot{\lambda}_2)^{2} ( qh_1^2 \lambda_1 )^2 \biggr](h_2 \lambda_1 \dot{\lambda}_2)^{-2} </math> |
|
|
<math> = </math> |
<math> \biggl[ \biggl(\frac{\dot{\lambda}_1}{\lambda_1}\biggr)^2 - \biggl( \frac{\dot{\lambda}_2}{\lambda_2} \biggr)^2 \biggr]( q h_1^2 h_2 \lambda_1 \lambda_2 )^2 (h_2 \lambda_1 \dot{\lambda}_2)^{-2} </math> |
|
|
<math> = </math> |
<math> \biggl[ \frac{\dot{\lambda}_1}{\lambda_1} + \frac{\dot{\lambda}_2}{\lambda_2} \biggr] \biggl[ \frac{\dot{\lambda}_1}{\lambda_1} - \frac{\dot{\lambda}_2}{\lambda_2} \biggr] \biggl( \frac{ q h_1^2 \lambda_2}{\dot{\lambda}_2} \biggr)^2 </math> |
<math>\Rightarrow</math> |
<math> \frac{\dot{C}_2}{C_2} \biggl(\frac{d \ln{\lambda}_2}{dt}\biggr) </math> |
<math> = </math> |
<math> \biggl[ \frac{\dot{\lambda}_1}{\lambda_1} + \frac{\dot{\lambda}_2}{\lambda_2} \biggr] \biggl[ \frac{\dot{\lambda}_1}{\lambda_1} - \frac{\dot{\lambda}_2}{\lambda_2} \biggr] ( q h_1^2 )^2 </math> |
|
|
<math> = </math> |
<math> \biggl[ \frac{\dot{\lambda}_1}{\lambda_1} + \frac{\dot{\lambda}_2}{\lambda_2} \biggr] \frac{d\ln h_2}{dt} </math> |
|
|
<math> = </math> |
<math> \biggl[ \frac{\ln(\lambda_1 \lambda_2)}{dt} \biggr] \frac{d\ln h_2}{dt} </math> |
Two Views of Equation of Motion
Christoffel Symbol Formalism
The second component of the equation of motion can be obtained by setting <math>i = 2</math> and <math>C_i = 1</math> in Equation CV.01, specifically,
<math> \frac{d(h_2^2 \dot{\lambda}_2)}{dt} </math> |
<math>=</math> |
<math> {h_k}^2 \Gamma^k_{2j} \dot{\lambda}_j \dot{\lambda}_k </math> |
<math> = {h_1}^2 \dot{\lambda}_1 \biggr[ \Gamma^1_{21} \dot{\lambda}_1 + \Gamma^1_{22} \dot{\lambda}_2 \biggl] + {h_2}^2 \dot{\lambda}_2 \biggr[ \Gamma^2_{21} \dot{\lambda}_1 + \Gamma^2_{22} \dot{\lambda}_2 \biggl] </math> |
|
<math>=</math> |
<math> {h_1}^2 \dot{\lambda}_1 \biggr[ \biggl( \frac{1}{h_1} \frac{\partial h_1}{\partial\lambda_2} \biggr) \dot{\lambda}_1 - \biggl( \frac{h_2}{h_1^2} \frac{\partial h_2}{\partial\lambda_1} \biggr) \dot{\lambda}_2 \biggl] + {h_2}^2 \dot{\lambda}_2 \biggr[ \biggl( \frac{1}{h_2} \frac{\partial h_2}{\partial\lambda_1} \biggr) \dot{\lambda}_1 + \biggl( \frac{1}{h_2} \frac{\partial h_2}{\partial\lambda_2} \biggr) \dot{\lambda}_2 \biggl] </math> |
|
|
<math>=</math> |
<math> \biggl( h_1 \frac{\partial h_1}{\partial\lambda_2} \biggr) \dot{\lambda}_1^2 + \biggl( h_2 \frac{\partial h_2}{\partial\lambda_2} \biggr) \dot{\lambda}_2^2 </math> |
© 2014 - 2021 by Joel E. Tohline |